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Introduction: What is chaos?

e A classical example of a chaotic dynamical system is the stadium
billiard. Its trajectories are complex and irregular.
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e A tiny change in the ball’s position or velocity
will cause the trajectory to deviate, and this
deviation will exponentially grow in time.

e We can see this mathematically or in simulations, but is there a direct
way to measure chaos? (Problem: no reference data.)



Accessing chaos “experimentally” and theoretically

e “A flap of a butterfly’s wing can change the weather.”

Is there a direct way to test this theory?

Test 1: Observe current weather. Run the time backward,
introduce a butterfly, and run the time forward. Check if the
weather is different.

Test 2: Have two copies of the Earth, with and without the
butterfly (but otherwise in the same state).

e Both tests are well-defined in the quantum setting.
(Test 2 should be done on the thermofield double.)

e The butterfly effect can be characterized by out-of-time-order
correlators like (D(t)C(0)B(t)A(0)), where A, B, C, D are

some quantum observables.



Naturally ordered (Keldysh) correlators

e Consider an abstract quantum experiment setup:
— The initial state is p = Psystem @ Pprobe
— The system and the probe interact and evolve forward in time:

H= Hsystem + Hprobe - Z Xj Y}'; U= 'feXp (—Z / H(t)dt)

J . .
system probe time ordering

— A yes-or-no measurement is performed, producing the “yes”
outcome with probability P = Tr(UTIIUp).

e By evaluating various quantities on the probe side,

the probability P expands into terms like this: t,
(3 ()T X ()T X, (8) -+ X () Gt
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Out-of-time correlators (OTOCs)

e Correlators with alternating times do not appear in the previous setting.
They require either “time travel” or a TFD.

e Semiclassical behavior in Hamiltonian systems, H = H(Z,p)

Z(t), p(t) depend on the P «((0), p(0))
initial conditions Z(0), p(0): T AN
(1) ST (2(0),p(0)

Lyapunov exponent

— Chaotic systems: [p;(t), pi(0)] ~ he®",

(Ips(1). Pe(O)?) ~ e
T &_ small parameter

(pj (t)Pr(0)p; (t)pk (0)) + 3 other terms

Larkin, Ovchinnikov (1969)




Large N systems with all-to-all interactions

e Random Heisenberg model (IV spins)
H=->"% JzSesy, J%= v

i<k «

Random parameters

e SYK model (N Majorana modes)
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— Sachdev, Ye, 1992 — a similar model with SU(M) spins and
two-body interactions. (The spins are made of fermions.)

— This model (Kitaev, 2015)

— Detailed calculations: Maldacena, Stanford, arxiv:1604.07818,
Kitaev, Suh, arXiv:1711.08467



The SYK model: full definition

N Majorana operators Operator algebra:
: N/2
dim H = 2N/ XiXk T XkX5 = Ojk
antisymmetric tensor
\
Z J]klm Xj Xk Xt Xm | The coupling parameters Jjx;, are
J»k»lvm Gaussian random variables
—— J? (independent for j < k <1< m)
ij;lm = 07 J]klm 3'm

— This is the ¢ = 4 variant. More generally, one can consider interactions
of order ¢ = 2,4,6, ..., though the ¢ = 2 case is degenerate.

— For N > 1,73, the model is solved by the dynamical mean field
method.



OTOCs in non-integrable large N systems

SYK OTOC (x;(t)xx(0)x;(t)xx(0)) as a function of time
ik
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“Barly times” s ! <t < tyer =2 'InN
e Generic behavior: (D(t)C(0)B(t)A(0)) — (DB)(CA) ~ + e*

— In most examples, » < 277

— In general, | < 27T | (Shenker, Stanford, and Maldacena, 2015).
g

— For the SYK model, s = 27TT(1 — O(%)) .



Qualitative explanation of the exponential growth

e Consider the SYK model at infinite temperature. Express x;(t) as

— Z csxs(0) + Z Co 953 Xs1 (0) X (0)Xsy (0) 4 - - -

§1<82<583

Then

Z |cs‘\|2 =1, (L (), xk Z les|? = % (size of S)
S

S>3k
support set

e Heisenberg evolution: % x; =1[H, x;] = % Zk,l,m e i e
(size of S) grows exponentially until it becomes ~ N.



OTOC and the general four-point function

e The OTOC (D(t)B(0)C(t)A(0)) is a special case of
(D(61)B(05)C(602)A(04))

LN

01 ~ 0y ~ it O3 ~ 0, ~0

— We use the complex time variable 6 =it+7 (0 <7 <f5)
— For convenience, [ =27

— Thus, the bound on the Lyapunov exponent reads: 0 < s <1



Single-mode anzats for early-time OTOCs

(Kitaev, Suh [arxiv:1711.08467])
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93%94%0
0<7<2r

e Connected OTOC (like (D(t)C(0)B(t)A(0)) — (DC)(BA)):

(x5 (01) Xk (03) x5 (02) i (01) ) + (xx5) (XX

rs O 1gi(m—01—02+03+04)/2 TR0, — 6,) TA(93 —04)

e (Anti)-commutaor OTOC (like ([p(t),p(0)]?)):

(x5 (01), xk(03) {5 (01), X (03) })
- 2 cos(xm/2)
C

6—i%(91+92—93—94)/2 TR(el .

02) YA (05 — 6,)




Outline of the technical part

Dynamical mean-field (illustrated by the SYK model)
Kinetic equation for the early-time OTOCs
Ladder identity and branching time

Some applications:
— Near-maximal chaos at 5.J > 1

— Maximal chaos in the butterfly wavefront



SYK model: the Green function

Definition of the imaginary-time Green function:

G(ri, ) = —(T x;(n)x;(7)) &

Bare Green function (for H = 0): G
éb = (—aT)A, Gb<71772) = —% Sgn(ﬁ - 7’2)

. . : ik
Disorder-averaged interaction: ’ oo X

(it J
X, = ik ~ i
J2
D GREREES ~ 3




SYK model: the Schwinger-Dyson equations

e General structure of the Green function:

by )y )y
G _ Gy, n GbO Gy —l—GbOGbOGb 4.
e Schwinger-Dyson equations:
(-0, -2)G =1 ie. (BG)(m1,7) = [dr X(m,7)G(1,72),

-O- = A ie. 2(71,7'2) = JZG(TlaTQ)qil

The second equation is a variant of the dynamic mean-field.



Solution at long times (|5, — | > J!)

negligible
e Solving the equations ()CATY =1, X(r,m) = JQG(TlaTz)q_l

e Solution for the zero temperature (= o00) (Sachdev, Ye 1992)

Gpoo(T1,72) = —b*|J (11 — 7'2)|_ZA sgn(7y — 7o) A=1/q

e At finite temperature, let 6 = 2T 7

g 06 Maldacena, Stanford 2016
If 5J > 1, then o li 8J =50 ,'
= ’ 'r—approximatc .
G (61, 05) o 03,22 sgn by, Fos
where 615 = 2sin & 92 :
(Parcollet, Georges 1998) S A DA TR



OTOC and the general four-point function

e The OTOC (D(t)B(0)C(t)A(0)) is a special case of
(D(61)B(05)C(602)A(04))

LN

01 ~ 0y ~ it O3 ~ 0, ~0

— We use the complex time variable 6 =it+7 (0 <7 <f5)
— For convenience, [ =27

— Thus, the bound on the Lyapunov exponent reads: 0 < s <1



Connected four-point function F

(T (00 Xk 03)k(00)) = COr, 0)G B, 62) + - F (01, 02,6, 61)

e Diagrammatic expansion (up to subleading 1/N terms)

F(01,02,05,04) = —: z - :Ij B ; o o j

—.. +(3+4)

e Bethe-Salpeter equation: F = Fy+ KF
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F0<91702793764): _2 4 + 2><4 m
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K(01,05,05,0,) = — = —J*(q— 1)G(013)G(024) G(034)"

2 4




Connected OTOC

OTOC(th t27 t37 t4> - _N_l-/—:(ela 927 83, 94)
= (G (01)x1(03) x5 (02) Xk (62)) + (x50 (k)
91:it1—|—7r, 92:it2, 93:it3+§, 94:it4—%
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F(6r, 05,05, 04) ~ / 085 s K (61, 05, 85, 6) F (B, 6o, s, 61)

folds



Kinetic equation and retarded kernel
o Let F(tl, tz) = OTOC(tl, t2, tg, t4) Then

F(ty,ty) = /dt5 dtg K (t1,t2,t5,t6) F(t5,t6)

K (tlat27t57t6 i’w - _‘]2 q - 1)GR(t15>GR(t26)GW(t56) -2

e Eigenfunctions: Ta(tl,tg) = e 2MFR)27 (4 — 1)

KR, = kp(a)Ts <  KBY, =kp(a)Ya,

where KR t,t") fKR(s—f—— s— Lt & —%) e* ds
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e Solving for the Lyapunov exponent: |kgr(—3) =1




Connection with the anzats

‘91>r\/vvvx,<93
0,7 TR TANg,

01 ~ 0y ~ it O3~ 04 ~0
O=71+it, 0<7<2m

(x5 (01) x5 (03) x5 (02) x5(64) ) + (X;3X5) Xk Xk

n O leielm—t1=02105+00)/2 YR (g, _ 9.) TA(g, — 6,)
/

seemingly independent solution to the eigenfunction  eigenfunction
coefficient eigenvalue equation of K} of K&

({x3(00), xa(03) } {x5(01), xx(63) })
- 2 cos(xm/2)

2 e #HO1+02-0s=00)/2 YR (g, _ 9,) TA (65 — 6,)



Example: SYK model for N > 5J > 1

e The model is maximally chaotic: s ~ 1.

e The eigenfunctions TR  and Téﬂ are generated by the action of

Ve

L_1 = €t<at = A), L1 = 6_t<at - A)
on the first variable of the Wightman function

Gw<t1,t2) = G(Ztl + W,itg) c

eltitta—ts—ta)/2

C

B draug N
ey

OTOC(tl, tg,t37t4) ~ TR(tlg)TA(t34), C

(C' is obtained from the Schwarzian theory)



e Ladder identity:

Main results

2cos ZL

2
C

k(=) (YA, TR) =1

A Ry __
(T 7T )_T‘@TR

— Allows for the calculation of C' from the retarded kernel;

— Conversely, in the case of near-maximal chaos, one can calculate
02 = 1 — 5 using ki (—1) from the conformal limit and C' from
the Schwarzian theory.

e Branching time tg = ki (—») is the average time separation s between
adjacent rungs in a ladder diagram contributing to the OTOC:

1 \ A
o= ety [ o e
< I > LR

1 R 3
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Derivation sketch

e Idea: cut a long ladder in half; find a consistency condition.

— Cuting the ladder: Fix tg; find adjacent rungs such that

ts ' t7

t3
| ts + te by -+ tg
| <ty <
0 ! 0 2 0 2

tq

t1

to T
t [ t
6 o 8

— Consistency condition:
5. R 7
1 3 1 ) . : 7 3
>’\/\I\/\/\< — . W W .
2 4 e 68 Orman
R

— The factor 2 cos % = #7/2 4 ¢=#7/2 arises because there are two
different ways to put 5,6 on the double Keldysh contour.



Near-maximal chaos (8J — 0o, s — 1)

2 2
e The prefactor r = % in the commutator OTOC has a

finite limit:

-1
r = (Ka(=1) (T4, 14)) N~
e The correction to the Lyapunov exponent is

1—%%§— 205 J!

m  wkk(=1) (TA TA)




Application to a 1D model

ijlm,;ﬂ—l ‘]J/’klmw
B [ : ﬁ . ] (Gu, Qi, Stanford 2016)
z—1 73 r+1

o OTOC,o(t1, b2, ts,ta) == (Xjw(01)Xk0(03) X2 (02) Xk0(0)) + (- )(- )

dp .
e Fourier transform: /2—p6’px OTOC,(t1, t2, t3, ta)
e \ ~~ t =

titta _ tatty
2 2
o C(p)_le"‘(P)t

s#(p) =~ #(0) — tpap? is equal to 1 at some p; = i|p,

hence C(p)~' = (N -2cos 28T . ¢5. (T4, TR))_1 has a pole.

e Result: The Lyapunov exponent in the butterfly wavefront is exactly
1 is J is above threshold.



Summary and further ideas

e The ladder identity is very useful for calculating OTOCs.

1

e The commutator OTOC is proportional to ¢; and characterizes

dissiparive effects.

— Such effects admit an interpretation as inelastic scattering in a
certain effective model

— Analogous to grvitational scattering of massive particles near a
black hole horizon, where the dissipative effects are due string
production (Shenker, Stanford 2014)

— Challenge: construct a model with ¢ > 1. Such a model might
have some virtues of string theory



