Chaos and out-of-time-order correlators in large-N systems

Overview + new results from Yingfei Gu, AK [1812.00120]

Alexei Kitaev (Caltech)

<u>Introduction: What is chaos?</u>

• A classical example of a chaotic dynamical system is the stadium billiard. Its trajectories are complex and irregular.

• A tiny change in the ball's position or velocity will cause the trajectory to deviate, and this deviation will exponentially grow in time.

• We can see this mathematically or in simulations, but is there a *direct* way to measure chaos? (Problem: no reference data.)

• "A flap of a butterfly's wing can change the weather."

Accessing chaos "experimentally" and theoretically

Is there a *direct* way to test this theory?

introduce a butterfly, and run the time forward. Check if the weather is different.

That 2: Have two comics of the Forth with and without the

Test 1: Observe current weather. Run the time backward,

Test 2: Have two copies of the Earth, with and without the butterfly (but otherwise in the same state).

- Both tests are well-defined in the quantum setting. (Test 2 should be done on the thermofield double.)
- The butterfly effect can be characterized by out-of-time-order correlators like $\langle D(t)C(0)B(t)A(0)\rangle$, where A, B, C, D are some quantum observables.

Naturally ordered (Keldysh) correlators

- Consider an abstract quantum experiment setup:
 - The initial state is $\rho = \rho_{\text{system}} \otimes \rho_{\text{probe}}$
 - The system and the probe interact and evolve forward in time:

$$H = H_{\text{system}} + H_{\text{probe}} - \sum_{j} X_{j} Y_{j}, \qquad U = \mathbf{T} \exp\left(-i \int H(t) dt\right)$$
system probe time ordering

- A yes-or-no measurement is performed, producing the "yes" outcome with probability $P = \text{Tr}(U^{\dagger}\Pi U \rho)$.
- By evaluating various quantities on the probe side, the probability *P* expands into terms like this:

the probability
$$F$$
 expands into terms like the $\langle X_{j_1}(t_1')^{\dagger} \cdots X_{j_s}(t_s')^{\dagger} X_{k_p}(t_p) \cdots X_{k_1}(t_1) \rangle$

$$t_1' < \cdots < t_s', \quad t_p > \cdots > t_1$$

time :

Out-of-time correlators (OTOCs)

- Correlators with alternating times do not appear in the previous setting. They require either "time travel" or a TFD.
- Semiclassical behavior in Hamiltonian systems, $H = H(\vec{x}, \vec{p})$

$$\vec{x}(t), \vec{p}(t)$$
 depend on the initial conditions $\vec{x}(0), \vec{p}(0)$:
$$[p_j(t), p_k(0)] = i\hbar \frac{\partial p_j(t)}{\partial x_k(0)}$$
 Lyapunov exponent

Chaotic systems: $[p_j(t), p_k(0)] \sim \hbar e^{0 t}$

$$\langle [p_j(t), p_k(0)]^2 \rangle \sim \hbar^2 e^{2\lambda t}$$
 small parameter

Larkin, Ovchinnikov (1969)

 $\langle p_i(t)p_k(0)p_i(t)p_k(0)\rangle + 3$ other terms

Large N systems with all-to-all interactions

• Random Heisenberg model (N spins)

• Random Heisenberg model (
$$N$$
 spins)
$$H = -\sum_{j < k} \sum_{\alpha} J_{jk} S_j^{\alpha} S_k^{\alpha}, \qquad \overline{J_{jk}^2} = \frac{J^2}{N}$$
• SYK model (N Majorana modes)
$$H = -\frac{1}{4!} \sum_{\alpha} J_{jklm} \chi_j \chi_k \chi_l \chi_m, \qquad \overline{J_{jklm}^2} = 3! \frac{J^2}{N^3}$$

- Sachdev, Ye, 1992 a similar model with SU(M) spins and two-body interactions. (The spins are made of fermions.)
- This model (Kitaev, 2015)
- Detailed calculations: Maldacena, Stanford, arxiv:1604.07818, Kitaev, Suh, arXiv:1711.08467

The SYK model: full definition

 $\dim \mathcal{H} = 2^{N/2}$

antisymmetric tensor

N Majorana operators χ_i

Operator algebra:

$$\chi_j \chi_k + \chi_k \chi_j = \delta_{jk}$$

1

$$H = -\frac{1}{4!} \sum_{j,k,l,m} J_{jklm} \chi_j \chi_k \chi_l \chi_m$$
$$\overline{J_{jklm}} = 0, \qquad \overline{J_{jklm}^2} = 3! \frac{J^2}{N^3}$$

The coupling parameters J_{jklm} are Gaussian random variables (independent for j < k < l < m)

- This is the q=4 variant. More generally, one can consider interactions of order $q=2,4,6,\ldots$, though the q=2 case is degenerate.
- For $N \gg 1, \beta$, the model is solved by the *dynamical mean field* method.

OTOCs in non-integrable large N systems

- Generic behavior: $\langle D(t)C(0)B(t)A(0)\rangle \langle DB\rangle\langle CA\rangle \sim \frac{1}{N}e^{\varkappa t}$
 - In most examples, $\varkappa \ll 2\pi T$.

- For the SYK model, $\varkappa = 2\pi T \left(1 - O\left(\frac{T}{I}\right)\right)$.

- In general, $\varkappa \leqslant 2\pi T$ (Shenker, Stanford, and Maldacena, 2015).

Qualitative explanation of the exponential growth

• Consider the SYK model at infinite temperature. Express $\chi_j(t)$ as

$$\chi_j(t) = \sum_s c_s \chi_s(0) + \sum_{s_1 < s_2 < s_3} c_{s_1 s_2 s_3} \chi_{s_1}(0) \chi_{s_2}(0) \chi_{s_3}(0) + \cdots$$

Then

$$\sum_{S} |c_{S}|^{2} = 1, \qquad \left\langle \{\chi_{j}(t), \chi_{k}(0)\}^{2} \right\rangle = \sum_{S \ni k} |c_{S}|^{2} = \frac{1}{N} \left\langle \text{size of } S \right\rangle$$

• Heisenberg evolution: $\frac{d}{dt} \chi_j = i[H, \chi_j] = \frac{i}{3!} \sum_{k,l,m} J_{jklm} \chi_k \chi_l \chi_m$. $\langle \text{size of } S \rangle$ grows exponentially until it becomes $\sim N$.

OTOC and the general four-point function

• The OTOC $\langle D(t)B(0)C(t)A(0)\rangle$ is a special case of

- We use the complex time variable $\theta = it + \tau$ $(0 < \tau < \beta)$
- For convenience, $\beta = 2\pi$
- Thus, the bound on the Lyapunov exponent reads: $0 \le \varkappa \le 1$

Single-mode anzats for early-time OTOCs

$$\theta_1 \approx \theta_2 \approx it$$
 $\theta_3 \approx \theta_4 \approx 0$ $\theta = \tau + it$, $0 < \tau < 2\pi$

 $\theta = \tau + it,$ • Connected OTOC (like $\langle D(t)C(0)B(t)A(0)\rangle - \langle DC\rangle\langle BA\rangle$):

$$\langle \chi_{j}(\theta_{1})\chi_{k}(\theta_{3})\chi_{j}(\theta_{2})\chi_{k}(\theta_{4})\rangle + \langle \chi_{j}\chi_{j}\rangle\langle\chi_{k}\chi_{k}\rangle$$

$$\approx C^{-1}e^{i\varkappa(\pi-\theta_{1}-\theta_{2}+\theta_{3}+\theta_{4})/2}\Upsilon^{R}(\theta_{1}-\theta_{2})\Upsilon^{A}(\theta_{3}-\theta_{4})$$

• (Anti)-commutaor OTOC (like $\langle [p(t), p(0)]^2 \rangle$):

$$\langle \{\chi_{j}(\theta_{1}), \chi_{k}(\theta_{3})\} \{\chi_{j}(\theta_{1}), \chi_{k}(\theta_{3})\} \rangle$$

$$\approx \frac{2\cos(\varkappa\pi/2)}{C} e^{-i\varkappa(\theta_{1}+\theta_{2}-\theta_{3}-\theta_{4})/2} \Upsilon^{R}(\theta_{1}-\theta_{2}) \Upsilon^{A}(\theta_{3}-\theta_{4})$$

Outline of the technical part

- Dynamical mean-field (illustrated by the SYK model)
- Kinetic equation for the early-time OTOCs
- Ladder identity and branching time
- Some applications:
 - Near-maximal chaos at $\beta J \gg 1$
 - Maximal chaos in the butterfly wavefront

SYK model: the Green function

Definition of the imaginary-time Green function:

$$G(\tau_1, \tau_2) = -\langle \mathbf{T} \chi_j(\tau_1) \chi_j(\tau_2) \rangle$$

Bare Green function (for
$$H = 0$$
): G_b
 $\hat{G}_b = (-\partial_{\tau})^{-1}$, $G_b(\tau_1, \tau_2) = -\frac{1}{2} \operatorname{sgn}(\tau_1 - \tau_2)$

Disorder-averaged interaction:
$$j \times \frac{k}{k} + \cdots + \frac{k}{k}$$

Disorder-averaged interaction: $\sum_{k=1}^{j} \frac{k}{1} \cdots \frac{k}{k} \sum_{k=1}^{j} \frac{k}{1} \cdots \frac{k}{n} \sum_{k=1}^{j} \frac{k}{n} \cdots \frac{k}{n} \sum_{$

Disorder-averaged interaction:
$$m \times 1 \times m$$

Taylor expansion in the interaction strength βJ :

 $\sum_{m=1}^{J} \sum_{l=1}^{k} = J_{jklm} \sim \frac{J}{N^{3/2}}$ $\times \cdots \times \sim \frac{J^{2}}{N^{3}}$

$$\sum_{k,l,m}$$

SYK model: the Schwinger-Dyson equations

• General structure of the Green function:

$$\frac{G}{G} = \frac{G_{\rm b}}{G_{\rm b}} + \frac{G_{\rm b}}{G_{\rm b}} + \frac{G_{\rm b}}{G_{\rm b}} + \frac{G_{\rm b}}{G_{\rm b}} + \cdots$$

• Schwinger-Dyson equations:

$$(-\partial_{\tau} - \hat{\Sigma})\hat{G} = 1$$
 i.e. $(\Sigma G)(\tau_1, \tau_2) = \int d\tau \, \Sigma(\tau_1, \tau) G(\tau, \tau_2),$

$$\Sigma = \{ \Sigma(\tau_1, \tau_2) = J^2 G(\tau_1, \tau_2)^{q-1} \}$$

The second equation is a variant of the dynamic mean-field.

Solution at long times $(|\tau_1 - \tau_2| \gg J^{-1})$ • Solving the equations $(-\partial_{\tau}) - \hat{\Sigma} \hat{G} = 1, \qquad \Sigma(\tau_1, \tau_2) = J^2 G(\tau_1, \tau_2)^{q-1}$

 $G_{\beta=\infty}(\tau_1,\tau_2) \approx -b^{\Delta} |J(\tau_1-\tau_2)|^{-2\Delta} \operatorname{sgn}(\tau_1-\tau_2)$

• Solution for the zero temperature $(\beta = \infty)$ (Sachdev, Ye 1992)

• At finite temperature, let
$$\theta = \frac{2\pi}{\beta} \tau$$

If $\beta J \gg 1$, then
$$G(\theta_1, \theta_2) \propto \theta_{12}^{-2\Delta} \operatorname{sgn} \theta_{12}$$

$$\widehat{S}^{0.4}$$
Maldacena, Stanford 2016
$$\beta J = 50$$

$$\widehat{S}^{0.4}$$

 $C_{01}^{0,0}$ 0.2 $C_{01}^{0,0}$ 0.2 where $\theta_{12} = 2\sin\frac{\theta_1-\theta_2}{2}$ exact (Parcollet, Georges 1998)

OTOC and the general four-point function

• The OTOC $\langle D(t)B(0)C(t)A(0)\rangle$ is a special case of

- We use the complex time variable $\theta = it + \tau$ $(0 < \tau < \beta)$
- For convenience, $\beta = 2\pi$
- Thus, the bound on the Lyapunov exponent reads: $0 \le \varkappa \le 1$

Connected four-point function \mathcal{F} $\left\langle \mathbf{T} \, \chi_j(\theta_1) \chi_j(\theta_2) \chi_k(\theta_3) \chi_k(\theta_4) \right\rangle = G(\theta_1, \theta_2) G(\theta_3, \theta_4) + \frac{1}{N} \mathcal{F}(\theta_1, \theta_2, \theta_3, \theta_4)$

$$\mathcal{F}(\theta_1, \theta_2, \theta_3, \theta_4) = -\frac{1}{2} \frac{3}{4} - \frac{1}{2} \frac{3}{4} - \frac{1}{2} \frac{3}{4} - \frac{1}{2} \frac{3}{4}$$

$$- \dots + (3 \leftrightarrow 4)$$
• Bethe-Salpeter equation: $\mathcal{F} = \mathcal{F}_0 + K\mathcal{F}$

$$\mathcal{F}_0(\theta_1, \theta_2, \theta_3, \theta_4) = -\frac{1}{2} \frac{3}{4} + \frac{1}{2} \frac{3}{4}$$

$$K(\theta_1, \theta_2, \theta_3, \theta_4) = -\frac{1}{2} \frac{3}{4} = -J^2(q-1)G(\theta_{13})G(\theta_{24})G(\theta_{34})^{q-2}$$

Connected OTOC

OTOC
$$(t_1, t_2, t_3, t_4) = -N^{-1}\mathcal{F}(\theta_1, \theta_2, \theta_3, \theta_4)$$

$$= \langle \chi_j(\theta_1)\chi_k(\theta_3)\chi_j(\theta_2)\chi_k(\theta_4) \rangle + \langle \chi_j\chi_j \rangle \langle \chi_k\chi_k \rangle$$

$$\theta_1 = it_1 + \pi, \qquad \theta_2 = it_2, \qquad \theta_3 = it_3 + \frac{\pi}{2}, \qquad \theta_4 = it_4 - \frac{\pi}{2}$$

• Let $F(t_1, t_2) = OTOC(t_1, t_2, t_3, t_4)$. Then

$$F(t_1, t_2) = \int_{\mathbb{R}} dt_5 dt_6 K^{R}(t_1, t_2, t_5, t_6) F(t_5, t_6)$$

Kinetic equation and retarded kernel

$$K^{R}(t_{1}, t_{2}, t_{5}, t_{6}) = -\frac{1}{2 - \frac{1}{R}} \int_{6}^{5} w = -J^{2}(q - 1)G^{R}(t_{15})G^{R}(t_{26})G^{W}(t_{56})^{q-2}$$

$$K^{\mathrm{R}}\widetilde{\Upsilon}_{\alpha} = k_{\mathrm{R}}(\alpha)\widetilde{\Upsilon}_{\alpha} \quad \Leftrightarrow \quad K_{\alpha}^{\mathrm{R}}\Upsilon_{\alpha} = k_{\mathrm{R}}(\alpha)\Upsilon_{\alpha},$$

• Eigenfunctions: $\widetilde{\Upsilon}_{\alpha}(t_1, t_2) = e^{-\alpha(t_1 + t_2)/2} \Upsilon(t_1 - t_2)$

where
$$K_{\alpha}^{R}(t,t') = \int K^{R}(s+\frac{t}{2},s-\frac{t}{2},\frac{t'}{2},-\frac{t}{2}) e^{\alpha s} ds$$

• Solving for the Lyapunov exponent: $k_{\rm R}(-\varkappa)=1$

Connection with the anzats

$$\theta_{1} \xrightarrow{\boldsymbol{\theta}_{2}} \Upsilon^{\mathbf{R}} \qquad \Upsilon^{\mathbf{A}} \theta_{3}$$

$$\theta_{1} \approx \theta_{2} \approx it \qquad \theta_{3} \approx \theta_{4} \approx 0$$

$$\theta = \tau + it, \quad 0 < \tau < 2\pi$$

$$\langle \chi_j(\theta_1)\chi_k(\theta_3)\chi_j(\theta_2)\chi_k(\theta_4)\rangle + \langle \chi_j\chi_j\rangle\langle \chi_k\chi_k\rangle$$

$$\approx C^{-1} e^{i\varkappa(\pi-\theta_1-\theta_2+\theta_3+\theta_4)/2} \Upsilon^{\rm R}(\theta_1-\theta_2) \Upsilon^{\rm A}(\theta_3-\theta_4)$$
 seemingly independent solution to the eigenfunction eigenfunction coefficient eigenvalue equation of $K_{-\varkappa}^{\rm R}$ of $K_{-\varkappa}^{\rm A}$

$$\langle \{\chi_j(\theta_1), \chi_k(\theta_3)\} \{\chi_j(\theta_1), \chi_k(\theta_3)\} \rangle$$

$$\approx \frac{2\cos(\varkappa \pi/2)}{C} e^{-i\varkappa(\theta_1 + \theta_2 - \theta_3 - \theta_4)/2} \Upsilon^{R}(\theta_1 - \theta_2) \Upsilon^{A}(\theta_3 - \theta_4)$$

• The model is maximally chaotic: $\varkappa \approx 1$.

• The eigenfunctions
$$\widetilde{\Upsilon}^{\rm R}_{-\varkappa}$$
 and $\widetilde{\Upsilon}^{\rm A}_{-\varkappa}$ are generated by the action of

 $L_{-1} = e^t(\partial_t + \Delta), \qquad L_1 = e^{-t}(\partial_t - \Delta)$

$$G^{W}(t_1, t_2) = G(it_1 + \pi, it_2)$$
.

on the first variable of the Wightman func

$$C^{W}(t_{1}, t_{2}) = C(it_{1} + c_{2})$$

$$G^{\mathrm{W}}(t_1,t_2) = G(it_1+\pi$$

$$G^{\mathrm{W}}(t_1,t_2)=G(it_1+\pi$$

Example: SYK model for $N \gg \beta J \gg 1$

$$=G(it_1+\pi,it_2).$$

$$=G(it_1+\tau$$

OTOC
$$(t_1, t_2, t_3, t_4) \approx \frac{e^{(t_1 + t_2 - t_3 - t_4)/2}}{C} \Upsilon^{R}(t_{12}) \Upsilon^{A}(t_{34}), \qquad C = \frac{4\pi \alpha_S N}{\beta I}$$

$$C$$
 βJ βJ βJ βJ βJ βJ

$$G \quad (t_1, t_2) = G(tt_1 + \pi)$$

Main results

• Ladder identity:

$$N \frac{2\cos\frac{\varkappa\pi}{2}}{C} k_{\mathrm{R}}'(-\varkappa) \left(\Upsilon^{\mathrm{A}}, \Upsilon^{\mathrm{R}}\right) = 1 \qquad \left(\Upsilon^{\mathrm{A}}, \Upsilon^{\mathrm{R}}\right) = \mathbf{1}$$

- Allows for the calculation of C from the retarded kernel;
- Conversely, in the case of near-maximal chaos, one can calculate $\delta \varkappa = 1 \varkappa$ using $k'_{\rm R}(-1)$ from the conformal limit and C from the Schwarzian theory.
- Branching time $t_B = k'_R(-\varkappa)$ is the average time separation s between adjacent rungs in a ladder diagram contributing to the OTOC:

$$t_{B} = \frac{1}{(\Upsilon^{A}, \Upsilon^{R})} \int_{\Upsilon^{A}} \underbrace{\int_{\Upsilon^{R}} \frac{1}{2} \frac{1}{Y^{R}} dt_{12} dt_{34} s ds}_{\Upsilon^{R}} dt_{12} dt_{34} s ds, \quad s = \frac{t_{1} + t_{2}}{2} - \frac{t_{3} + t_{4}}{2}$$

Derivation sketch

- Idea: cut a long ladder in half; find a consistency condition.
- Cuting the ladder: Fix t_0 ; find adjacent rungs such that

- Consistency condition:

$$\frac{1}{2} \longrightarrow \frac{3}{4} = \frac{1}{2} \longrightarrow \frac{5}{6} \cdot \underbrace{\sqrt{\frac{R}{W}} \sqrt{\frac{7}{8}} \cdot \frac{7}{8}}_{8} \longrightarrow \frac{3}{4}$$

- The factor $2\cos\frac{\varkappa\pi}{2} = e^{i\varkappa\pi/2} + e^{-i\varkappa\pi/2}$ arises because there are two different ways to put θ_5, θ_6 on the double Keldysh contour.

Near-maximal chaos $(\beta J \to \infty, \varkappa \to 1)$

• The prefactor $r = \frac{2\cos(\varkappa\pi/2)}{C}$ in the commutator OTOC has a finite limit:

$$r = \left(k_{\mathrm{R}}'(-1)\left(\Upsilon^{\mathrm{A}}, \Upsilon^{\mathrm{A}}\right)\right)^{-1} N^{-1}$$

• The correction to the Lyapunov exponent is

$$1-arkappa$$
 $pprox rac{rC}{\pi} = rac{2lpha_S}{\pi k_{
m P}'(-1)\left(\Upsilon^{
m A},\Upsilon^{
m A}
ight)}J^{-1}$

$rac{ ext{Application to a 1D model}}{J_{jklm,x-1}}$

$$\cdots \underbrace{x-1}_{x} \underbrace{x+1}_{x} \cdots \qquad (Gu, Qi, Stanford 2016)$$

• OTOC_{x,0}(t₁, t₂, t₃, t₄) :=
$$\langle \chi_{j,x}(\theta_1)\chi_{k,0}(\theta_3)\chi_{j,x}(\theta_2)\chi_{k,0}(\theta_4)\rangle + \langle \cdots \rangle \langle \cdots \rangle$$

• Fourier transform:
$$\int \frac{dp}{2\pi} e^{ipx} \underbrace{\text{OTOC}_p(t_1, t_2, t_3, t_4)}_{t = \frac{t_1 + t_2}{2} - \frac{t_3 + t_4}{2}}$$

$$\chi(p) \approx \varkappa(0) - t_B a p^2$$
 is equal to 1 at some $p_1 = i |p_1|$,

hence $C(p)^{-1} = \left(N \cdot 2 \cos \frac{\varkappa(p)\pi}{2} \cdot t_B \cdot (\Upsilon^{A}, \Upsilon^{R})\right)^{-1}$ has a pole.

ullet Result: The Lyapunov exponent in the butterfly wavefront is exactly 1 is J is above threshold.

Summary and further ideas

- The ladder identity is very useful for calculating OTOCs.
- The commutator OTOC is proportional to t_B^{-1} and characterizes dissiparive effects.
 - Such effects admit an interpretation as inelastic scattering in a certain effective model
 - Analogous to grvitational scattering of massive particles near a black hole horizon, where the dissipative effects are due string production (Shenker, Stanford 2014)
 - Challenge: construct a model with $t_B \gg 1$. Such a model might have some virtues of string theory