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From experiments it is clear that the predictions of 
Landau Theory are invalid in the normal state near conditions
for high Tc.

These conditions are such that there is a competing phase:
(Not obvious in the case of Cuprates).
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)− 1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.

Figure 7. Phase Diagram of a 115 compound and alloys at various
pressures shown. Figure is reproduced from [51].

Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10− 3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈10− 3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].
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model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑

k,k′,σ

g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑

kσk′σ ′

'(k, k′)c†
σ ′(−k′)c†

σ (k′)cσ (k)cσ ′(−k);

'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef

), where λs are the dimensionless
coupling constants exhibited below. In the continuum
approximation for fermions near the Fermi energy, γ (k, k′) ∝
i(k × k′). The pairing vertex is then

'(k, k, ) ∝ −(k × k′)2Reχ(k − k′, ω). (34)

Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
of momentum, the pairing symmetry is given simply by
expressing (k × k′)2 in separable form

(k × k′)2 = 1/2[(k2
x + k2

y )(k
′2
x + k

′2
y ) − (k2

x − k2
y )(k

′2
x − k

′2
y )

− 4(kx ky )(k
′
x k

′
y )]. (35)

Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−x Fx ):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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From experiments it is clear that the predictions of 
Landau Theory are invalid in the normal state near conditions
for high Tc.

These conditions are such that there is a competing phase:
(Not obvious in the case of Cuprates).
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)− 1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.

Figure 7. Phase Diagram of a 115 compound and alloys at various
pressures shown. Figure is reproduced from [51].

Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10− 3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈10− 3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].
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model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑

k,k′,σ

g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑

kσk′σ ′

'(k, k′)c†
σ ′(−k′)c†

σ (k′)cσ (k)cσ ′(−k);

'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef

), where λs are the dimensionless
coupling constants exhibited below. In the continuum
approximation for fermions near the Fermi energy, γ (k, k′) ∝
i(k × k′). The pairing vertex is then

'(k, k, ) ∝ −(k × k′)2Reχ(k − k′, ω). (34)

Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
of momentum, the pairing symmetry is given simply by
expressing (k × k′)2 in separable form

(k × k′)2 = 1/2[(k2
x + k2

y )(k
′2
x + k

′2
y ) − (k2

x − k2
y )(k

′2
x − k

′2
y )

− 4(kx ky )(k
′
x k

′
y )]. (35)

Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−x Fx ):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)− 1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.

Figure 7. Phase Diagram of a 115 compound and alloys at various
pressures shown. Figure is reproduced from [51].

Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10− 3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈10− 3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].
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model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑

k,k′,σ

g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑

kσk′σ ′

'(k, k′)c†
σ ′(−k′)c†

σ (k′)cσ (k)cσ ′(−k);

'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef

), where λs are the dimensionless
coupling constants exhibited below. In the continuum
approximation for fermions near the Fermi energy, γ (k, k′) ∝
i(k × k′). The pairing vertex is then

'(k, k, ) ∝ −(k × k′)2Reχ(k − k′, ω). (34)

Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
of momentum, the pairing symmetry is given simply by
expressing (k × k′)2 in separable form

(k × k′)2 = 1/2[(k2
x + k2

y )(k
′2
x + k

′2
y ) − (k2

x − k2
y )(k

′2
x − k

′2
y )

− 4(kx ky )(k
′
x k

′
y )]. (35)

Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−x Fx ):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)− 1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.

Figure 7. Phase Diagram of a 115 compound and alloys at various
pressures shown. Figure is reproduced from [51].

Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10− 3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈10− 3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].
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model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑

k,k′,σ

g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑

kσk′σ ′

'(k, k′)c†
σ ′(−k′)c†

σ (k′)cσ (k)cσ ′(−k);

'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef

), where λs are the dimensionless
coupling constants exhibited below. In the continuum
approximation for fermions near the Fermi energy, γ (k, k′) ∝
i(k × k′). The pairing vertex is then

'(k, k, ) ∝ −(k × k′)2Reχ(k − k′, ω). (34)

Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
of momentum, the pairing symmetry is given simply by
expressing (k × k′)2 in separable form

(k × k′)2 = 1/2[(k2
x + k2

y )(k
′2
x + k

′2
y ) − (k2

x − k2
y )(k

′2
x − k
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− 4(kx ky )(k
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′
y )]. (35)

Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−x Fx ):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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From experiments it is clear that the predictions of 
Landau Theory are invalid in the normal state near conditions
for high Tc.

These conditions are such that there is a competing phase:
(Not obvious in the case of Cuprates).
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)− 1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.

Figure 7. Phase Diagram of a 115 compound and alloys at various
pressures shown. Figure is reproduced from [51].

Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10− 3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈10− 3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].
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model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑

k,k′,σ

g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑

kσk′σ ′

'(k, k′)c†
σ ′(−k′)c†

σ (k′)cσ (k)cσ ′(−k);

'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef

), where λs are the dimensionless
coupling constants exhibited below. In the continuum
approximation for fermions near the Fermi energy, γ (k, k′) ∝
i(k × k′). The pairing vertex is then

'(k, k, ) ∝ −(k × k′)2Reχ(k − k′, ω). (34)

Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
of momentum, the pairing symmetry is given simply by
expressing (k × k′)2 in separable form

(k × k′)2 = 1/2[(k2
x + k2

y )(k
′2
x + k

′2
y ) − (k2

x − k2
y )(k

′2
x − k

′2
y )

− 4(kx ky )(k
′
x k

′
y )]. (35)

Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−x Fx ):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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(Not obvious in the case of Cuprates).
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any reasonable microscopic calculation gives that the cut-off
of the fluctuations goes down as renormalizations increase.
For example, the spin-fluctuation frequencies go down as the
magnetic susceptibility increases, etc.

Let us turn briefly to the microscopic calculations from
weak-coupling theory. In the paramagnon model, the best
of these is due to Levin and Valls [49]. The local Hubbard
interaction

Hint = I

∫
drdr′n(r)n(r′)δ(r − r′) (26)

promotes ferromagnetic exchange in free fermions (no
lattice potential) and associated increase of the amplitude of
ferromagnetic spin-fluctuations for I < Ic, the critical value
for ferromagnetism. This model does not describe the physics
of He3 very well because of the substantial range of the hard-
core interactions compared with inter-particle spacing; it does
not give the right values of the Landau parameters or their
pressure dependence. But nevertheless several features of
our interest in relation to calculations of Tc, from fluctuations
induced by particle–hole interactions, from such a model (and
its modifications) have substantial educational value because
RPA respects conservation laws. Levin and Valls performed
such calculations in the Hubbard model to calculate both the
Landau parameters as well as solve the Eliashberg equations
with the fluctuation spectra obtained in the calculations. The
important results of their analysis and calculations are:

(1) The pairing interaction in the ℓ = 1 channel V1 has a direct
dependence on I but so does the effective mass as well as
a m∗/m. The renormalized pairing interaction parameter
λ1depends on the product V1(m

∗/m)− 1. Moreover the
self-energy correction in the Tc formula depends on
parameter λ0. This goes up with I . This reduces Tc and
may be taken to contribute to an effective reduction of cut-
off if one insists on using the BCS formula for Tc even for
finite ℓ.

(2) The net effect still is that Tc goes up with increasing
I except close to the ferromagnetic transition, where it
swings downwards towards 0. This is due to the pile up
of the fluctuation spectra to low energies for I close to
Ic. This has two deleterious effects on Tc: it increases
inelastic scattering and reduces the cut-off ωc.

These conclusions are consistent with those from the analysis
of the Eliashberg equations with a general form of pairing
and self-energy kernel discussed above as well as with the
conservation laws, when they can usefully be applied.

4.2. Empirical results on heavy fermions

Heavy-fermion compounds show superconductivity, generally
associated with an AFM qcp, (but note the interesting case
of CeCu2Si2 under pressure, where two forms of criticality,
AFM, and mixed valence each seem to have an associated
superconducting region [50]), although the converse is not
true; AFM qcps in some heavy-fermion compounds are
not accomapanied by superconductivity. Superconductivity
always appears to be in a finite angular-momentum state and
is not due to electron–phonon interactions.

Figure 7. Phase Diagram of a 115 compound and alloys at various
pressures shown. Figure is reproduced from [51].

Heavy fermions in rare-earth and actinide compounds
are the ultimate realization of the ideas of analyticity and
continuity which underlie the Landau quasi-particle idea. In
their Fermi liquid regime, the effective mass enhancement in
several heavy-fermion compounds is 0(103) and the quasi-
particle renormalization residue z is O(10− 3). This situation
changes in the quantum-critical regime where the quasi-
particle idea breaks down and transport and thermodynamic
properties are not those of a Fermi liquid. This is a beautiful
example of how z → 0 as T → 0, only logarithmically,
produces completely different physical properties at low
temperatures than z ≈10− 3.

Knowing the Fermi liquid renormalizations is not as
useful to deduce parameters for superconductivity in heavy
fermions as in liquid He3 for two reasons: superconductivity
is near qcps, where such renormalizations are singular and
the qcp are at large q-vectors, where Landau parameters
are not defined. However, the energy scales are set by
the renormalizations given by the Landau parameters above
and are therefore essential to bear in mind. They are ideal
systems to study magnetic fluctuations by inelastic neutron
scattering. But only in a few of them are such results available
near quantum criticality because for the technique to be fully
effective requires large single crystals. From the study of
the thermodynamic and transport properties (such as residual
resistivity, temperature dependence of resistivity, ultrasonic
attenuation, thermal conductivity and nuclear relaxation rates)
in the Fermi-liquid regime, the leading renormalizations in
heavy fermions were found to be qualitatively different from
that in liquid He3. The renormalizations are characteristic of a
sub-set of Fermi liquids in which the single-particle self-energy
is very weakly dependent on momentum compared with on
energy [52].
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model which gives the symmetry of the observed order and
its approximate magnitude. It is instructive to note that
equation (31) is the orbital-angular momentum analog of
the familiar collective spin-fluctuation coupling to spin-flip
excitations of fermions.

We may write equation (31) in momentum space;

Hint =
∑

k,k′,σ

g i(k̂ × k̂′)ψ+(k, σ )ψ+(k′, σ )U(k − k′) + H.C.

(32)

The coupling constant for the scattering of fermions by the
fluctuations can be extracted from the ARPES data in the
normal state, figure 12 [76]. From such measurements,
one deduces that the coupling constant λ0 for all cuprates
measured by ARPES is between about 0.7 and 1 and the cut-
off ωc is between 0.4 and 0.5 eV. The lattice generalization
of equation (32) also predicts that the scattering rate varies
∝a + b cos(4θ) where θ is measured from the π, π direction
with a variation of about a factor of 2 going from the π, π to
the π, 0 direction.

The momentum dependence of coupling, even though
the spectrum itself is momentum dependent is crucial to
the symmetry of superconductivity promoted by the critical
fluctuations. This is seen as follows: Integrating over the
fluctuations in equation (32) gives an effective vertex for
scattering of fermion pairs:

Hpairing ≈
∑

kσk′σ ′

'(k, k′)c†
σ ′(−k′)c†

σ (k′)cσ (k)cσ ′(−k);

'(k, k′) = γ (k, k′)γ (−k, −k′)Reχ(ω = ϵk − ϵ′
k). (33)

This is correct to O(λωc
Ef

), where λs are the dimensionless
coupling constants exhibited below. In the continuum
approximation for fermions near the Fermi energy, γ (k, k′) ∝
i(k × k′). The pairing vertex is then

'(k, k, ) ∝ −(k × k′)2Reχ(k − k′, ω). (34)

Since Reχ(k − k′), ω) < 0 for −ωc < ω < ωc, independent
of momentum, the pairing symmetry is given simply by
expressing (k × k′)2 in separable form

(k × k′)2 = 1/2[(k2
x + k2

y )(k
′2
x + k

′2
y ) − (k2

x − k2
y )(k

′2
x − k

′2
y )

− 4(kx ky )(k
′
x k

′
y )]. (35)

Pairing interaction in the s-wave channel is repulsive, that in the
two d-wave channels is equally attractive, and in the odd-parity
channels is zero. The factor i in γ (k, k′) present because the
coupling is to fluctuations of time-reversal odd operators, is
crucial in determining the sign of the interactions of the pairing
vertex.

The high resolution ARPES spectra [59, 79, 80] in the
superconducting state have also been inverted using the
Eliashberg equation for the ‘normal’ self-energy to deduce
the fluctuation spectra. The spectra are consistent with that
of the state above Tc, and shows deviations only for energies
below the superconducting gap as expected for any spectra of
particle–hole fluctuations. Although it is quite unlikely that the
anomalous or pairing self-energy is given by different spectra
than the one deduce from the normal self-energy, the deduction
of the spectra from the anomalous self-energy requires even

Figure 13. The phase diagram of Co-doped FeAs2 [82, 83]. The
green triangles mark the transition to an altered structure while the
black circles mark the antiferromagnetic transition.
Superconducting region is shown in blue.

higher resolution that currently available, as explained in [79].
This is the last remaining hurdle in unambiguously identifying
the fluctuation spectra responsible for superconductivity.

To estimate Tc, we use what has been discussed in section 2
about the effect of inelastic scattering on finite angular-
momentum pairing. Tc is given approximately by

Tc ≈ ωc exp(−(1 + |λs|)/|λd|), (36)

where λs is the coupling constant which appears in the normal
self-energy and λd, the coupling constant which appears in
the pairing self-energy. From the measurements summarized
above and equation (34), λd/λs ≈ 1/2. Using the deduced
value of λs and ωc from the ARPES measurements, one
estimates a value of Tc ≈ 100 K. Although Tc is expected
to reduce in the underdoped region due to the competing phase
and in the overdoped region due to the change in the spectra to
an incoherent spectra below a crossover scale, no quantitative
calculations for these effects exist.

4.4. The case of the Fe-Pnictides

The superconductivity discovered in the Fe-pnictides is also
quite unlikely to be induced through interaction with lattice
vibrations. A recent review is [81]. The highest Tc in this
class of compounds so far is about 50 K in RFeAs(O1−x Fx ):
(R = Ce, Pr, Sm, Nd, etc). The ‘parent compound’
at x = 0 is metallic but antiferromagnetic. The lack
of significant observable feature in the specific heat at the
high superconducting transition temperatures raises doubt as
to whether bulk superconductivity in this structure of the
Fe-pnictides has indeed been found. There is also some
evidence that this structure may have a two-phase co-existence
as a function of doping. A closely related new structure of
Fe-pnictides called 122 appears to form good single crystals.
Thermodynamic data indicate bulk superconductivity. The
phase diagram of this class of materials appears similar for
both hole doping and electron doping. The superconducting
region is organized around a quantum critical point, see
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Remarkable Fact:
Singular Fermi-liquid properties of AFM’s
are the same as that of cuprates.

Cuprates

Heavy Fermion (115)

Fe-based AFM-supercond.

Easier problem than
in Cuprates?

AFM -QCP

P

AFM -QCP

Also, same properties in quasi-2D Heavy-Fermions,

YbRh(2)Si(2) - Paschen, Steglich, et al.

CeCu(6) - Lohneysen et al.

CeCoIn(5)- Thompson et al.

Same!  Same?

I will speak mostly about properties down the red-line



The observed qtm. critical properties cannot be  
understood  by any model which is in the class of  
extension of Wilson-Fisher type models to qtm. dynamics. 

Hertz, Moriya, ...... 
 - Dynamical critical exponents etc.: d(eff) = z + d.



Quantum-Critical Fluctuations of the Model
(Vivek Aji, CMV - PRL 2007, PRB-2009, 2010)

Classical Model: XY model with 4-fold Anisotropy

L =
P

<ij> K cos(✓i � ✓j) +K4 cos 2(✓i � ✓j) + h4 cos(4✓i)

Anisotropy: Marginally Irrelevant in the Fluctuation region,
Highly relevant in the ordered region.

Topological Phase Transition (Kosterlitz-Thouless, Berezinsky)
Ordering by Binding of vortices of opposite circulation.

✓ � field

(Ashkin-Teller Model)



θi θj

Lz,jLz,i

H =
∑

i
L2

z,i

2I + J
∑

i,j cos(θi − θj) + Diss.

Quantum XY - Model coupled to Fermions.

Phase transition driven by topological defects:
warps and vortices, not by anharmonic oscillations.
The Qtm. model is almost as well soluble as the classical model.



Deriving the Fluctuation Spectra for the XY Model:

Structure of the theory 

Microscopic Hamiltonian of Interacting Fermions

! Hferm +Hcoll +Hfermi�coll

Dissipative Quantum XY Model:
From Hcoll and contribution from Hcoll�fermion.

Dissipation :

j / r✓

↵
4⇡!q

2|✓(q,!)|2

Monte-Carlo Calcs. also including
dissipation of vortices.



Usual way of thinking of the problem: 
vortex loops in space and imaginary time. 

Not soluble in a controlled way. 

New variables needed?



Solution of the Model

Find an exact transformation from ✓ to
orthogonal topological excitations

⇢v(r, ⌧) and ⇢w((r, ⌧)

1. Analytical solution: (Aji-CMV -prl2007, prb2009, Hou- prb2016).

2. Quantum-Monte-carlo calcs.

vortices and warps.



tex moves from site 1 to site 2 in Fig. 3, leaving behind an
antivortex at site 1. The total vorticity before and after the
event is zero as is required by the condition of having a
neutral plasma. Over time !" a phase slip event occurs on the
link between sites 1 and 2 at time "i. If the lower end of the
bond is labeled by rxy = !x ,y", the event, in our notation, is
given as

m = − ŷ!#r − rxy$##" − "i$ . #13$

The vortex current generated by such an event is

JV = x̂!#r − rxy$!#" − "i$ . #14$

Thus a phase slip on a link is equivalent to a local in space
and time vortex current.

B. Local phase slips and warps

The periodic in time boundary condition allows for phase
slip events on a site. Such events change the winding sector
and dynamics of the vector field that is not captured by the
vortex current. Consider the effect of a change of 2$ at site
!i , j" so that %ij winds around to %ij +2$ over a time !". Then
the four spatial links connected to the site !i , j" experience
phase slips. As shown in Fig. 4, the corresponding link vari-

ables are: mi,j:i+x,1=1, mi,j:i,j+1=1, mi,j:i−1,j =−1, and mi,j:i,j−1
=−1.

The phase slip event at time "i and site rij has the follow-
ing representation in terms of the vector field m:

m#r,"$ = %#x̂ + ŷ$!#r − rij$ − x̂!#r − rij − ax̂$ − ŷ!#r − rij

− aŷ$&##" − "i$ . #15$

Such a vector field distribution has no curl and hence does
not affect the vorticity. On the other hand the divergence is
nonzero and phase slip events generate field configurations
that are orthogonal to those created by vortices. For a general
vector field one does expect two kinds of sources to generate
an arbitrary distribution. For the 2+1-dimensional quantum
model we have, besides the vortices, the additional topologi-
cal entity to describe the winding number sector in time.
Events that change the winding number sector, i.e., local
phase slips, acts as sources for a divergence in the vector
field. Just as a vortex is equivalent to an electric charge in the
dual language, the sources created by phase slips can be
shown to be a local distribution of monopoles #&m$. Given
the distribution in Eq. #15$, the corresponding configuration
of monopoles, which we term the charge of the phase slip is

&m#r,"$ = ! · m#r,"$

= %4!#r − rij$ − !#r − rij + ax̂$ − !#r − rij − ax̂$

− !#r − rij + aŷ$ − !#r − rij − aŷ$&##" − "i$ .

#16$

The monopole distribution equivalent to a phase slip is
shown in Fig. 5. The total monopole charge of the configu-
ration is zero. Since the distribution has azimuthal symmetry
all harmonics are zero. This is the two-dimensional lattice
realization of the configuration of a charge surrounded by an
equal but opposite charge distributed over a spherical shell of
radius a in three dimensions. The magnetic field due to the
charges is confined within one unit cell around the site of the
phase slip and is zero outside. Thus two phase slip events can
interact only if they are at most one lattice spacing apart; the
interaction is local in space. Although this is physically ob-
vious from this discussion, we will demonstrate this explic-
itly in the next section.

Phase slip events generate a local vortex current which is
divergenceless but has a finite curl.

1 2

δτ

Phase Slip event on a link

FIG. 3. #Color online$ A phase slip between nearest neighbors in
time produces a vortex and an antivortex on neighboring plaquettes.
In time one bond has acquired a nonzero value, represented by the
red bond. If the value on the bond is −1, the vorticity at site 1 is
negative and on site 2 is positive.

δτ

i,j

i,j
11-1

-1

FIG. 4. #Color online$ A phase-slip event in rime results in a
change in the link variables. For a change of 2$ at site !i , j", the
four links connected to it acquire the values shown in the figure.

4

-1

-1

-1

-1

FIG. 5. #Color online$ Warps are configurations of the field m
with finite divergence but no curl. For a warp of unit strength at site
!i , j", the divergence has a magnitude of 4 at the site and −1 at the
four nearest-neighbor sites. In general the magnitude of the diver-
gence at the site will equal to the number of nearest neighbors on
the lattice.
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tex moves from site 1 to site 2 in Fig. 3, leaving behind an
antivortex at site 1. The total vorticity before and after the
event is zero as is required by the condition of having a
neutral plasma. Over time !" a phase slip event occurs on the
link between sites 1 and 2 at time "i. If the lower end of the
bond is labeled by rxy = !x ,y", the event, in our notation, is
given as

m = − ŷ!#r − rxy$##" − "i$ . #13$

The vortex current generated by such an event is

JV = x̂!#r − rxy$!#" − "i$ . #14$

Thus a phase slip on a link is equivalent to a local in space
and time vortex current.

B. Local phase slips and warps

The periodic in time boundary condition allows for phase
slip events on a site. Such events change the winding sector
and dynamics of the vector field that is not captured by the
vortex current. Consider the effect of a change of 2$ at site
!i , j" so that %ij winds around to %ij +2$ over a time !". Then
the four spatial links connected to the site !i , j" experience
phase slips. As shown in Fig. 4, the corresponding link vari-

ables are: mi,j:i+x,1=1, mi,j:i,j+1=1, mi,j:i−1,j =−1, and mi,j:i,j−1
=−1.

The phase slip event at time "i and site rij has the follow-
ing representation in terms of the vector field m:

m#r,"$ = %#x̂ + ŷ$!#r − rij$ − x̂!#r − rij − ax̂$ − ŷ!#r − rij

− aŷ$&##" − "i$ . #15$

Such a vector field distribution has no curl and hence does
not affect the vorticity. On the other hand the divergence is
nonzero and phase slip events generate field configurations
that are orthogonal to those created by vortices. For a general
vector field one does expect two kinds of sources to generate
an arbitrary distribution. For the 2+1-dimensional quantum
model we have, besides the vortices, the additional topologi-
cal entity to describe the winding number sector in time.
Events that change the winding number sector, i.e., local
phase slips, acts as sources for a divergence in the vector
field. Just as a vortex is equivalent to an electric charge in the
dual language, the sources created by phase slips can be
shown to be a local distribution of monopoles #&m$. Given
the distribution in Eq. #15$, the corresponding configuration
of monopoles, which we term the charge of the phase slip is

&m#r,"$ = ! · m#r,"$

= %4!#r − rij$ − !#r − rij + ax̂$ − !#r − rij − ax̂$

− !#r − rij + aŷ$ − !#r − rij − aŷ$&##" − "i$ .

#16$

The monopole distribution equivalent to a phase slip is
shown in Fig. 5. The total monopole charge of the configu-
ration is zero. Since the distribution has azimuthal symmetry
all harmonics are zero. This is the two-dimensional lattice
realization of the configuration of a charge surrounded by an
equal but opposite charge distributed over a spherical shell of
radius a in three dimensions. The magnetic field due to the
charges is confined within one unit cell around the site of the
phase slip and is zero outside. Thus two phase slip events can
interact only if they are at most one lattice spacing apart; the
interaction is local in space. Although this is physically ob-
vious from this discussion, we will demonstrate this explic-
itly in the next section.

Phase slip events generate a local vortex current which is
divergenceless but has a finite curl.

1 2

δτ

Phase Slip event on a link

FIG. 3. #Color online$ A phase slip between nearest neighbors in
time produces a vortex and an antivortex on neighboring plaquettes.
In time one bond has acquired a nonzero value, represented by the
red bond. If the value on the bond is −1, the vorticity at site 1 is
negative and on site 2 is positive.

δτ

i,j

i,j
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-1

FIG. 4. #Color online$ A phase-slip event in rime results in a
change in the link variables. For a change of 2$ at site !i , j", the
four links connected to it acquire the values shown in the figure.
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FIG. 5. #Color online$ Warps are configurations of the field m
with finite divergence but no curl. For a warp of unit strength at site
!i , j", the divergence has a magnitude of 4 at the site and −1 at the
four nearest-neighbor sites. In general the magnitude of the diver-
gence at the site will equal to the number of nearest neighbors on
the lattice.
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What is a warp?

Change in m:

Change in r ·m:

Jump in Phase by 2⇡ at a point in space
between two time-slices,

Creates a monopole of charge 4
surrounded by 4 monopoles of charge -1.

mij,⌧,⌧ 0 = (✓)i,⌧ � (✓)j,⌧ 0
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, ⇢v = r⇥m.
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With these variables, the singular part of the action is

K 0 =
p
KK⌧ , v2 = K

K⌧
.

RG on This form of S:
⇢v and ⇢w are orthogonal.
The third term is less singular than the first two,
which are equivalent to v ! 0, or v ! 1.
But v is relevant both around v ! 0 and v ! 1.

Calculated Phase Diagram and Correlation functions
tested by Quantum Monte-Carlo calculations.

In terms of these variables, a miracle:
(Aji,CMV (2009)
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FIG. 7. Phase diagram in α-Kτ plane when K = 0.4. The red X
marks the position where the transition changes from z = 1 3DXY
university class to z = ∞ local critical type. Such calculations have
also been done for other values of K to demarcate the transition
between z = 1 and z = ∞ criticality shown in the phase diagram in
Fig. 8.

shown which has Nτ = 100 but we have obtained results
showing that M decreases for larger Nτ , and is consistent with
being 0 asymptotically. It is difficult to study this behavior
systematically as it shows large fluctuations. The results are
consistent with what one expects of the quasiordered phase
with spatial order (in each time slice) as evidence by the M2d

in Fig. 2, but disordered along the time direction. This is further
corroborated by the study of the correlation functions.

Figure 3 shows results with α = 0, K = 1.4 while Kτ is
varied. Increasing Kτ drives the quasiordered 2D phase to
the (2+1)D ordered phase. When Kτ ! 0.18, M ≈M2D, and
W 2

θ → 0 showing rapidly diminishing temporal fluctuations.
The purely spatial characteristics such as M2D and ϒx increase
only slightly. These results indicate the trend to order in
the time direction, given that spatial order has already been
achieved. We notice that χS has only a broad peak. This is
due to the fact that, given a finite Nτ , we see a 2D to (2+1)
D crossover rather than a transition, as mentioned earlier. We
have checked and found that χS sharpens as a function of Kτ

or larger Nτ .
We study the direct transition from the disordered phase

to ordered phase, by choosing Kτ = 0.3 and varying K .
The various panels in Fig. 4 show a compendium of results,
including the order parameter correlation functions and the
relation of the spatial and the temporal correlation lengths.
Both spatial and temporal ordering develop at a critical value
Kc between 0.45 and 0.5. The spatial and temporal correlations
show similar asymptotic behaviors near the critical point,
∝ exp(−s/ξs), where s = x or t . We find ξx ∼ ξτ near the
transition. This indicates, as expected for α = 0, that the
quantum transition has a dynamic critical exponent z = 1, i.e.,
it belongs to the classical 3d XY universality class.

IV. COMPLETE PHASE DIAGRAM

We recall the phase diagram calculated earlier in the K-α
plane [1,2] in which Kτ was kept fixed at a few low values. The
phase diagram appears similar to Fig. 1(a) with α replacing Kτ .

FIG. 8. The phase diagram in Kτ/K-α-1/(KτK) space. The
parameter space for the disordered, ordered, and quasiordered states
are specified. Purple dots show the disordered-ordered transition in
z = 1 class while blue dots represent the same transition in z → ∞
class. The transitions or crossovers between the quasiordered to
ordered (green) and quasiordered to disordered (red) are also shown.

However, in the K-α plane, the 2D quasiordered phase appears
via a true Kosterlitz-Thouless transition as verified in paper I
by the size dependence of the helicity modulus at the transition
as well as by the correlation function of the order parameter.

We have extended these calculations to other values of K
and Kτ and α, which are necessary to discover the change
from z = 1 to z → ∞ in the phase diagram. A compendium
of results from some of the new calculations are shown in
the various panels of Figs. 5– 7. We show the static quantities,
M, M2D, and ϒx for various values of the parameters, as well
as the order parameter correlations, G(x,τ ) for fixed time as
a function of x and for fixed x as a function of τ . From the
correlation functions, the spatial correlation length ξx and the
temporal correlation length ξτ and the relation between them
are deduced.

From the results in these figures as well as calculations
with other parameters, we deduce the set of transition lines
(and crossovers) between the three different phases in the
1/(KKτ )-α-Kτ/K space in Fig. 8. We find that the common
point of the three phases in the 1/(KτK)-α plane changes for a
fixed value of K = 0.4 from 1/KKτ ≈12 for α/4π2 ≈0.01,
1/KKτ ≈25 for α/4π2 ≈0.018 and for 1/KKτ ≈250 for
α/4π2 ≈0.026.

There is only one transition, from the disordered to the
(2+1)D ordered phase, for Kτ ! K and 1/KKτ " 10. A plot
of ξx against ξτ is also shown, from which we find that this
transition changes from one with z = 1 to that consistent with
z → ∞ for α/4π2 ! 0.01.

The change of z in the Kτ -α plane for a fixed value of K
is shown in Fig. 7. At the small value, K = 0.4 for which the
results are shown, there is no 2D quasiordered phase. The tran-
sitions occur, from the disordered phase when both Kτ and α
are small, to the ordered phase for larger values of these param-
eters. However, depending on whether the critical value of Kτ
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FIG. 1. (a) Phase diagram for α = 0 in the Kτ -K plane and (b) the same in the (Kτ/K)-1/(KτK) plane. This phase diagram is constructed
from calculations of various physical quantities in Figs. 2 and 3 for the values of Kτ and K for which the results are presented there. As
explained in the text, (KτK) is independent of temperature, while 1/(Kτ/K) depends on temperature as well as on the ultraviolet spatial and
temporal scales in the Monte Carlo simulations. At T → 0, the transition from the disordered to the Kosterlitz-Thouless type quasiordered
phase as well as from the latter to the (2+1)D ordered phase occur as crossovers. The transition from the disordered to the ordered phase is of
the 3D classical XY universality class. The implications of part (b) of the diagram for finite T crossovers and effects of temporal and spatial
anisotropy are discussed in the text.

along the spatial direction, or

ϒx = 1
N2Nτ

〈
∑

⟨x,x′⟩

∑

τ

cos($θx,x′,τ )

〉

− K

N2Nτ

〈( ∑

⟨x,x′⟩

∑

τ

sin($θx,x′,τ )
)2〉

. (4)

In the disordered state, the two terms have comparable
contributions and ϒx → 0. In an ordered phase, the second
term vanishes, so that ϒx is finite.
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FIG. 2. Static properties defined in the text, for α = 0, Kτ = 0.1,
and varying K over the 21 points shown. The results shown are for
N = 50 and Nτ = 100. A rapid growth and fall in χS denotes the
passage across a symmetry breaking for a quantum transition. The
rapid growth of the helicity modulus ϒx and M and M2D, as discussed
in the text, reveal a finite size crossover from the disordered phase to
quasiordered phase. The smooth behavior of W 2

θ shows that temporal
correlations do not change across this crossover, unlike the spatial
correlations.

Order parameter. For XY model, the order parameter
M(x,τ ) = (cos θx,τ , sin θx,τ ). Its modulus, the magnetization
in the plane, is defined as

M = 1
N2Nτ

〈∣∣∣∣∣
∑

x,τ

eiθx,τ

∣∣∣∣∣

〉

. (5)

In classical 2D XY model, the ordered phase has a quasilong-
range order, where M ∼ (1/N )1/(8πK), vanishes for N → ∞.
We also found it illuminating to calculate M2D, the magnitude
of magnetization in the planes at a given time τ and then
average it over the τ . This is equivalent to finding the
Kosterlitz-Thouless order parameter at each time slice and
then averaging over the time slices.

M2D = 1
N2Nτ

〈
∑

τ

∣∣∣∣∣
∑

x

eiθx,τ

∣∣∣∣∣

〉

. (6)

 0

 0.5

 1

 0  0.1  0.2  0.3  0.4

M
, M

2D
, 

S
,

x,
 W

2

K

OrderedQuasi-ordered

2D-3D Crossover

M
M2d

S /4
x/2

W2

FIG. 3. Calculation of the specified static quantities showing
results consistent with a transition (as T → 0) from the quasiordered
phase to the ordered phase for α = 0, K = 1.4 by varying Kτ over
the 12 different values shown. The rather large noise in the data is
due to finite size effects discussed in the text.
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have been verified [24] at the Disordered to the Quasi-ordered transition. The behavior is

quite different in the ordered phase. The stiffness Υx(N) in this transition already develops

for α > αc at small sizes and remains unchanged with N . For α < αc, Υx(N) decreases

exponentially.

The magnetization in the Quasi-Ordered KT phase is 0 in the limit N → ∞. But

the passage to this limit is very slow [31]. The finite size scaling is quite different at the

Ordered state as shown in Fig. (3). While M2D decreases with N at small N , it is consistent

with saturation at a finite value at large N , merging with the value of M . As discussed

immediately after the definition of M and M2D above, this is consistent with a truly Ordered

state.

10-4

10-3

10-2

10-1

 5  10  15  20  25

G
θ(

x,
τ 0

=2
)

x 

0.021
0.023
0.025

0.0254
0.0256

0.0258
0.026

0.0262
0.0266
0.027

10-5

10-4

10-3

10-2

10-1

 1  10  100

G
θ(

x 0
=2

,τ
)

τ

0.021
0.023
0.025

0.0254
0.0256

0.0258
0.026

0.0262
0.0266
0.027

FIG. 7: The order parameter correlation functions Gθ(x, τ) for transition from the Disordered

phase to the Ordered phase. Parameters are the same as in Fig. (6). We show Gθ(x, τ) as a

function of x for fixed τ = 2 (left panel) and as a function of τ for fixed x = 2.

C. Scaling of the order parameter correlation functions

The most revealing results about the critical properties are of course obtained from the

order parameter correlation functions. It is seen in Fig. (7) that there exists a separatrix

in Gθ(x, τ) for a fixed x or for a fixed τ such that, for α < αc the asymptotic correlation

→ 0 for large τ , and for α > αc, they tend to a constant value depending on α. We present

scaling analysis of the order parameter correlation functions on the disordered side.

We find that the leading asymptotic behaviors of Gθ(x, τ) can be captured in the scaling
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FIG. 8: Scaling analysis of the order parameter correlation function Gθ(x, τ) for fixed x = x0

(left panel) and for fixed τ = τ0 (right panel) from the disordered side of the Disordered to

Ordered phase transition as shown in Fig. 7. In the left panel, we fit each curve of τGθ(x0, τ)

with the form Aτ (x) exp[−(τ/ξτ )1/2], where the amplitude Aτ and the correlation length ξτ are

fitting parameters adjusted for each α and x. In the right panel, we fit each curve of Gθ(x, τ0)

with Ax(τ) exp(−x/ξx) where Ax(τ) and ξx are fitting parameters. The results of ξτ (x0,α) and

ξx(τ0,α) are shown in Fig. (9). We find that Aτ ≈ τc exp(−x/ξ0,x) with τc ≈ 0.12 and ξ0,x ≈ 1.0, and

Ax ≈ (τc/τ) exp[−(τ/ξτ (α−αc))1/2] with ξτ (α−αc) given in Eq. (23). It is expected that all curves

of τGθ(x0, τ)/Aτ for difference α and x0 collapse into a single curve exp(−t) with t = (τ/ξτ )1/2,

which are plotted (for clarity, they are rescaled by a factor 10(x0/2) for different x0). Gθ(x, τ0)/Ax

as functions of x/ξx are plotted in the same fashion. Because of the rapid decay of the correlation

function in this range of α, it has not been numerically possible to follow its behavior for larger x

and τ .

form

Gθ(x, τ) =
A

τ 1+ητ
e−(τ/ξτ )1/2 1

xηx
e−x/ξx , (22)

where ξτ(ξx) are correlation lengths along temporal(spatial) directions, and A is the am-

plitude. From the detailed results given in Appendix A, we determine that the anomalous

exponent ητ ≈ 0. We cannot determine the anomalous exponent ηx reliably in the numerical

calculations because even close to the critical point, where the temporal dependence fits the

1/τ behavior, the spatial dependence continues to be exponentially decreasing as a function

of x up to more than 1/2 the largest sizes that we can numerically calculate, please see Fig.

(7). Above that range, it appears to approach a constant, but could be consistent with a
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Order parameter correlations:

G(cos ✓)(x, ⌧) = G0
1
⌧ e

�⌧/⇠⌧ e�x/⇠x

G(cos ✓)(q,!) = G0 tanh
⇣

!p
(2T )2+⇠�2

⌧

⌘
1

q2+⇠�2
x

Three remarkable features:

(Lijun Zhu, Yan Chen, CMV -2014)
Monte-Carlo Calcs. for the Diss. Quantum XY-Model 

G✓(x, ⌧) / 1
⌧ e

�|⌧/⇠⌧ |1/2e�x/⇠x

⇠⌧ = ⌧ce
�
↵c/(↵c�↵)

�1/2

, for ↵ < ↵c

⇠x ⇡ ⇠0 ln (⇠⌧/⌧)

“Temperature”-Fourier Transform of 1/⌧ :tanh(!/2T )

Spatial length Scale is log of Temporal length scale
consistent with z ! 1.

c

1. Direct observation of warps and vortices in QMC.

2. Order Parameter Correlations:

a. Separable function of space and time!

b.

c.
i.e. Quantum-critical Flucts. proposed (1989) for MFL.

⇠x / log ⇠⌧

Analytic calculations: C. Hou and CMV - PRB (2016)
Verification by Monte-carlo calculations: Zhu, Chen, CMV -PRB (2014-2016)
See also Stiansen et al. (PRB -2012).

log(a/x)

Im
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Diss XY

- Im G(!, q)
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!

T1

T2

T3 T1 > T2 > T3

!c0

“Conventional”
⇠x / ⇠1/z⌧

q and ! dependence
entangled.

⇠x / log ⇠⌧

q and ! dependence
separable.

Contrast with “conventional” Qtm. Crit. Spectra 
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FIG. 4. �
00(q, E, T ) as functions of q for two q-scans around Q1=(0.8,0,0) (a) and Q3=(1.4, 0, 0.3) (b) at

various fixed E and T for CeCu5.9Au0.1. A q-independent background contribution has been subtracted.

The fitting curve is Lorentzian 1/[(q � qc)2/2
q + 1] with q=0.11 r.l.u. ⇡ 0.13 Å�1 (considering b = 5.1Å)

in (a) and q=0.13 Å�1 in (b).

and temperature at criticality, Eq. (3), with ⇠
�1
⌧ = 0, where it should simply be proportional to

tanh (E/2T ). However, unlike the case of the Fe compound discussed above, the E and T of the

measurements go well across the Fermi-energy of about 4 K, estimated from the linear part of the

specific heat [32]. The cut-o↵ function Fu(E/Ec) due to the upper cuto↵ Ec can no longer be

approximated as 1. The measured [29, 31] �00(Q, E, T ), scaled by a constant �0 [presumably the

value of �00(Q, E, T ) at E/(2T ) ! 1 and E ⌧ Ec], is shown as a function of E/2T in Fig.(5a). The

data agrees reasonably with the function tanh (E/2T ) when E ⌧ Ec, but systematically deviates
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CeCu5.8Au0.2
A. Schröder et al., 2001.
(Re-plotted).
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FIG. 5. �
00(Q, E, T ) as functions of E/(2T ) for various constant-E or T scans for CeCu5.9Au0.1 at three

ordering wave vectors Q = Q1,2,3. The label for di↵erent symbols shows the location of Q as well as the fixed

value of E (or T ), while T (or E) is varied. In (a), �00(Q, E, T ) is scaled by a constant �0 = 5.5µ2
B(meV )�1

while in (b) it is scaled additionally by Fu(E/Ec) = 1/
p
1 + (E/Ec)2 with Ec = 4K.

when E & Ec . We now choose a cut-o↵ function

Fu

✓
E

Ec

◆
=

1p
1 + (E/Ec)2

. (5)

We replot the same data, �00(Q, E, T )/�0, divided by Fu(E/Ec), as a function of E/2T in Fig.

(5b). With a value of Ec = 4K, the data, within its considerable error bars, is consistent with the

scaling function tanh (E/2T ).

A complete test of the theory requires measurements varying x or pressure to vary the distance

to criticality and thereby test the theory of the correlation length. It would also be desirable to

have more measurements for the momentum-energy and temperature dependence for smaller E/T .

CeCu6�xAux has a rather complicated magnetic structure. We urge neutron scattering results also

on other heavy-fermions with simpler antiferromagnetic structure near their quantum-criticality.

The q and E dependence of the data also has been fitted to an alternate phenomenological form

earlier[31]. However, it does not give the observed linear in T resistivity.

V. DISCUSSION

The limited available data is consistent with the separability of the momentum and energy

dependence of the critical fluctuations in two completely di↵erent experimental system, which

share the feature that they both have itinerant AFM quantum critical points. The tanh (E/2T )

dependence for energies smaller than the cut-o↵ is also consistent with the data. As mentioned

the linear in T -resistivity, and the T lnT entropy and thermopower are also properties of transport
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Calculation of measurable properties: 
Single particle self-energy, specific heat, 
density correlations, resistivity.

The most convenient way:

Regard the fluctuations as an irreducible vertex:

I

k,! k,!

⌃(k,!) =

G(k0,!0)

To do so, it is necessary to express the self-energy

in a different form, also effectively given by AGD

en-route to deriving Ward-identities:

This has the same skeletal structure as

 
 
FIG. S2: Exact representation of the normal and pairing self-energies. 𝐀  gives the 

self-energy in Gor’kov-Nambu space in terms of the exact Irreducible vertex and the exact 

Green’s function. 𝐁 is equivalent to 𝐀 in terms of the more familiar skeleton diagrams, and 

gives on the left the the normal self-energy Σ(𝐤,𝜔) and on the right the pairing self-energy 

𝜙(𝐤,𝜔). The direction of the external legs of the vertex ℐ, of the self-energy 𝑆, and of the 

Green’s function 𝒢 in 𝐀 for the normal and the pairing self-energy components are identical to 

those in 𝐁. The wiggly line in 𝐁 are the fluctuations 𝐹(𝐤, 𝐤′, 𝜔 − 𝜔′) exchanged by the 

fermions through vertices 𝑔(𝐤, 𝐤′). The normal self-energy as a function of (𝐤) as well as the 

intermediate normal state propagator on the left as a function of (𝐤′) have the full symmetry of 

the lattice, while on the right, the intermediate pairing propagator at 𝐤′, −𝐤′ as well as the 

pairing self-energy at 𝐤,−𝐤 have the symmetry of d-wave superconductivity; for example, the 

latter transforms as cos2𝜃𝐤̂ in the continuum approximation.  

if (i)    continues to be regular in the

other particle-hole channel,

and (ii) is a function of

I

(! � !0).

True even if    is singular.I

I = �⌃
�G !



!" = 2N!0"# d#d#!$!k,k!"F"!k"F"!k!" . !23"

Here d#=N!0"−1dSk / $vk$, where Sk is an element the Fermi
surface and N!0" is an effective density of states on the
Fermi surface for one spin species. Also, F"!k"F"!k!" are
separable lattice harmonics on to which $!k ,k!" is
projected,17

Fs!k" = Ns%1 − cos!kxa"cos!kya"& ,

Fd1!k" = Nd1%cos!kxa" − cos!kya"& ,

Fd2!k" = Nd2 sin!kxa"sin!kya" . !24"

Where the labels !s ,d1,d2" represent the irreducible lattice
representations !A1g ,B1g ,B2g" of a tetragonal lattice, popu-
larly referred to as extended s wave, dx2−y2 and dxy symme-
tries, respectively. The factor N" ensures normalization
'd#F"!k"F"!k"=1.

The resolution of $!k ,k!" in Eq. !20" is

$!k,k!" = !0(Fs!k"Fs!k!"
Ns

2 −
Fd1!k"Fd1!k!"

Nd1
2

−
F!d2"!k"Fd2!k!"

Nd2
2 ). !25"

From Eq. !25", the s-wave interactions are repulsive while
the interaction is equally attractive for the d!x2−y2" and dxy
waves for a circular Fermi surface. For the actual Fermi sur-
face of the cuprates in which the Fermi velocity is largest in
the !1,1" directions and the least in the !1,0" or the Cu-O
bond directions, d!x2−y2" pairing is favored because in that
case the maximum gap is in directions where the density of
states is largest.

VI. DEDUCTION OF PARAMETERS FROM ARPES
EXPERIMENTS AND ESTIMATES OF Tc AND !

In this section, we first summarize experimental evidence
and calculation directly showing that the scattering of fermi-
ons is uniquely given by the derived QCF’s and how ARPES
experiments have been used to determine the parameters
used later in this paper. We argue that since superconductiv-
ity is an instability of the normal state which occurs at T
% Tc, it is unlikely that any other fluctuations can dominate
in determining Tc.

The value of the cutoff &c, of the amplitude '0 in Eq. !13"
and the coupling constants in front of ( in Eq. !20" can be
provided in terms of the parameters of the microscopic
model as well as deduced from experiments below. Given a
coupling function of such fluctuations to fermions (!k ,k!" to
scatter from k to k!, calculated below, the self-energy of the
fermions is10

Im )!&,k" = −
*

2
!!k"*$&$, $&$ + &c

&c, $&$ , &c.+ !26"

Here !!k"=N!0",(2-k! and ,(2-k! is the average of $(!k ,k!"$2
over k! on the Fermi surface. In the phenomenological

approach8 this was taken to be momentum independent. In
Ref. 10, this expression is compared with the data in all
available directions and parts of the phase diagram of the
cuprates. In Fig. 3, we show the deduced MDC linewidth in
the !* ,*" direction for all the cuprates near optimal doping
for which data is available. This data is taken with poor
energy resolution, , 40 meV, to cover a wide energy range.
The linearity of the linewidth with energy in the normal state
for low energies has been checked with better precision in
other experiments. Here we focus on the full energy range.
We notice the remarkable correspondence with Eq. !26" with
the cutoff &c between 0.4 and 0.5 eV for all the measured
cuprates. Below we will use the slope of these curves for
&+ &c to deduce the coupling constant !! in different angu-
lar momentum channels. The normal-state resistivity and op-
tical conductivity can also be calculated using the values of
!! and &c to within about 30% of those deduced from the
single-particle spectra.

The most important point to be noted from Fig. 3 is the
following: the result in Eq. !26" arises because the scattering
at any energy &- T is proportional to the integrated weight
of fluctuations up to &, i.e., .'0

&Im '!&!". Therefore the lin-
earity of the scattering rate with & up to about &c and con-
stancy thereafter is a direct proof of the fluctuations of the
form of Eq. !13". The rather sharp &c proves that one need
not be concerned that a distinct energy scale of fluctuations
may not exist.18

An important deduction from recent analysis19 of high-
resolution laser-based ARPES at different angles on the
Fermi surface is that a momentum-independent fluctuation
spectra is obtained from the inversion of the data through
Eliashberg equations to fit the data at different angles.

In Eq. !25", !0 may be estimated thus: Re '!&".
−2'0 ln

&c

$&$ for $&$+ &c and it is vanishing beyond. The cutoff
&c is important but the weak dependence on $&$ may be
ignored by replacing it by O!Tc" for estimates of parameters
determining Tc. For &c.0.4 eV, as deduced from
experiments10 and Tc.100 K, Re '!&" is then .−6'0 for
&+ &c. Using this estimate !0.−6V2N!0"'0 with a cutoff in
the range of interaction at &c. %Here sxy

2 !k=kF".1 /2 has
been used.&

We now ask whether the &c and ! deduced from experi-
ments in the normal state yield the right order of magnitude

FIG. 3. !Color online" The MDC linewidths along the * , pi
directions for all the measured cuprates. The detailed references for
each cuprate are given in Ref. 10.

THEORY OF THE COUPLING OF QUANTUM-CRITICAL… PHYSICAL REVIEW B 81, 064515 !2010"

064515-5

ARPES results (2000-2016) for scattering rate at the Fermi-surface

Bi2212 - nodal direction (Lanzara et al.) 
Bi2201 - nodal direction (Shen et al.) 
LSCO - two directions (Chang et al.)
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1 + ln(Tx

T )
�
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Tx ⇡ 2⇥ 103K, g ⇡ 0.5
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Predicted relation between g here and in scattering rate obeyed 
as does Tx.
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FIG. 2. B � T scaling in BaFe2(As1�xPx)2 at x = 0.31. A. After subtracting the residual resistivity ⇢̃0, we plot the MR
divided by temperature versus B/T . The data are well approximated by a function of the form /

p
1 + c(B/T )2, with some

numeric parameter c, plotted as the grey dashed line. B. The MR (blue) and zero field resistance (pink) plotted as a function of
� up to room temperature. The extrapolation of the high-temperature, linear region is shown as a grey, dashed line. The lower
panel the MR with this linear component subtracted, showing that the MR asymptotically approaches the line ~/⌧ = ↵kBT .
The inset shows a schematic quantum critical phase diagram with the region of T - linear resistivity marked in red. Note that
the data shown here include that shown in Fig. 1.

include the role of an applied magnetic field, as shown in
Fig. 5. Here the important role of the combined energy
scale � is immediately apparent: at comparable values
of B and T the transport is linear in � but not in B or
T individually. Viewed in this way, magnetic fields pro-
vide another probe of the anomalous dynamics that lead
to T-linear resistivity, with the added benefit that, un-
like temperature, an applied magnetic field couples selec-
tively to charge, spin and material anisotropies, limiting
the possible theoretical descriptions of this phenomenon.
It is striking that the scale factor ⌘/↵ connecting mag-
netic field and temperature energy scales is close to unity
and does not appear to change in the doping range con-
sidered, which is surprising because the quasiparticle ef-
fective mass changes considerably in the same doping
range [26]. This strongly suggests that the magnetore-
sistance in BaFe2(As1�xPx)2 originates from the direct
e↵ect of magnetic field on the quantum dynamics near its
QCP, rather than the more conventional origin involving
orbital motion about the Fermi surface. These measure-
ments may point to a universal theoretical description of
the physics of metals near a QCP where the scattering
rate depends on the intricate interplay of energy scales
[10, 12, 14]. The magnetoresistance may therefore prove
crucial in elucidating the quantum dynamics of other sys-
tems that are thought to have vanishing energy scales, in-
cluding the cuprate superconductors and heavy fermion
systems [2, 18].
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II. SUPPLEMENTARY INFORMATION

A. Materials and Methods

Single crystals of BaFe2(As1�xPx)2 were grown by a
self-flux method described elsewhere [32]. Magnetoresis-
tance was measured by a standard four-probe method
and magnetic fields up to 65T were accessed at the
NHMFL Pulsed Field Facility, Los Alamos National
Laboratory. Contact resistances of around ⇠1⌦ were
achieved by sputtering Au and attaching gold wires with
EpoTek H20E. The magnetic field was oriented parallel
to the crystallographic c-axis and orthogonal to the cur-
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Hayes et al., Nat. Phys. (2016)

Similar results also in Cuprates in quantum-crit. region.

z

�⇢(T ) / H for H >> T.
<latexit sha1_base64="OE+OpA5ZYLQ350ZEPMT+SExURn0="></latexit>



It is important to note that both L’s for the XY model are pseudo-scalars. While Lorb

points in the orthogonal directions to the plane of the current r✓, L is a pseudo-scalar

whose directions are in not specified generally, but must be determined from the specific

realizations of the XY model. For a spin-ferromagnet or an antiferromagnet Lorb represents

orbital spin-currents, which are time-reversal even and so do not couple to a magnetic field.

In the loop-current model for cuprates, L, the generator of rotations of the anapole ⌦

in the cu-o plane. It points in the direction ẑ perpendicular to the planes. It couples to

the ẑ component of the magnetic field. The fact that it couples is obvious from the loop-

current representation of Lz, shown in Fig. (?). Bz changes the relative spatial regions of

net positive and negative flux in each unit-cell and hence couples linearly. But L being a

pseudo-scalar, the energy is independent of the direction of Bz. Lorb also couples to Bz

but since the coupling energy is proportional to the spatial gradient of ⌦, it is unimportant

compared to the coupling with the intrinsic angular momentum.

The situation is even more interesting for superconductors:

Consider the coupling of the magnetic field B to the quantum-rotors. The leading allowed

coupling in the Hamiltonian is of the form

SB =
X

i

Z �

0

d⌧ B · Liz(⌧), (3)

The scaling dimension [Bz]of Bz is therefore the same as [T ]⇥ [L].

The critical correlations of Lz(r, ⌧) have been derived by renormalization group methods

and tested by quantum-monte-carlo calculations. The scaling dimension of Lz is obtained

from its susceptibility �LzLz(i�j, �). At criticality, when the spatial and temporal correlation

lengths are very large compared to lattice constant and the ultra-violet time scale,

< L+
z (r, ⌧)Lz(0, 0) >/ ⌧c

⌧
log(a/|r|) (4)

Neglecting the logarithmic correction, and because ⌧c/⌧ = e
log(⌧c/⌧), we find that the corre-

lation function of Lz is dimensionsless on scaling of ⌧ and therefore is [T ]0. Then it follows

that the scaling dimension of Bz is the same as the scaling dimension of T , to possible log-

arithmic corrections. For resistivity obtained from scattering o↵ the critical fluctuations, it

follows that it will have Bz/T scaling, as observed. Since a field in the plane has no leading

e↵ect either on the AFM, nor for the order in the cuprates, no such scaling is to be expected

for fields in the plane. (This is not true for XY ferromagnets.)

4

Magnetic Field Dependence of Quantum-crit. Properties.

Scaling dimensions:
[Bz][Lz]/[T ] dimensionless.

Have shown that [Lz] = 0

Therefore [Bz]/[T ] dimensionless.

It follows that critical properties are
homogeneous functions of B/T ,
with log. corrections.

Tested by Montecarlo calculations.



Coupling of Magnetic fields to XY-model?

Topological Excitations: vortices and warps.

Obvious coupling to vortices:

To orbital angular momentum in charged systems.

But is there coupling to
intrinsic angular momentum:

ẑ ·B
R �
0 i@✓@t ?

None, except if ✓ jumps by 2n⇡ in Im. time.

i.e. only coupling to Topological excitations:
ẑ ·B

P
⇢w(⌧)

Microscopic Theory 

But dominant fluctuations are warps, not vortices.
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Time crystals in imaginary time !

Monte-carlo calculations: Lijun Zhu



G(r, ⌧) / 1/⌧,
G(r,!) / tanh(!/2T ).

leads to scattering rate / ⇢(T ) / T.

G(r, ⌧) / B
Log(⌧) ,

leads to ⇢(T ) / B.

Magnetic field dependence of resistivity in QCF region.

Definitive evidence for Topological fluctuations in time.

Prediction for magnetic flucs. measurable by neutron scattering:

�”(q,!) / B/!, for ! & T,B & T

times  logarithmic fns. of T

B leads to a floppy crystal of warps in time.

In the region in which  the specific heat is, 

Cv/T / Log T

Cv/T / Log B

simple calculation shows that it should acquire a contribution

for B >> T .

Prediction for single-particle scattering rate in Fe-based compounds: 

Scattering rate ~ ω, nearly ind. of angle - no hot-spots at AFM-QC !

Verified in CeCu(6-x)Au(x) and in CeCoIn(5).

1.

2.

3.



NFL behaviour in the heavy-fermion system CeCu6�xAux 9699

A final interesting point concerns the ultrasonic behaviour. For CeCu6 a FL-like
variation of the longitudinal elastic constants c22 and c33 with T is observed below 1 K,
1c/c0 ⇠ T 2, arising from 1c ⇠ �U(T ) where U is the internal energy and � the
appropriate Grüneisen parameter [5]. For CeCu5.9Au0.1, 1c increases as T 2 between ⇠0.08
and 0.2 K only, but then turns over to a linear increase towards higher T up to 0.9 K [40].
Clearly, a simple Grüneisen parameter fit does not work since U(T ) is very similar for
x = 0 and x = 0.1. Whether this linear T -dependence is a general feature at a magnetic
instability and related to the other NFL anomalies remains to be investigated.

Figure 10. The specific heat C of the NFL alloy CeCu5.9Au0.1 plotted as C/T versus log T in
various magnetic fields B applied parallel to the c-direction. The nuclear contribution has been
subtracted (after [40]).

4.2. Pressure-tuning the magnetic transition to T = 0

As mentioned above, the onset of magnetic order in the CeCu6�xAux system is attributed
to a weakening of the conduction-electron–4f-electron exchange constant J because of
the increase of the molar volume upon alloying with Au, and indeed, TN of CeCu6�xAux

decreases under hydrostatic pressure. Figure 9 shows C/T versus log T for x = 0.3 and 0.2
under various hydrostatic pressures p [41, 34]. The Néel temperature (again as determined
from the inflexion point of C(T ) above the maximum) decreases linearly with increasing
p for x = 0.3. For x = 0.2, a linear TN(p)-decrease is also compatible with the data.
TN ⇡ 0 is reached for 7–8 kbar or 3.2–4 kbar for x = 0.3 and 0.2, respectively. At
these pressures both alloys exhibit NFL behaviour with, surprisingly, the same coefficients
a and T0 for both, and additionally for the NFL alloy with x = 0.1 and p = 0. The data
for 7.1 and 8.2 kbar for x = 0.3 and for 3.2 and 4.1 kbar for x = 0.2, respectively, are
rather close, indicating again a finite width of the critical region. However, at 6.9 kbar
for x = 0.2 the clear suppression of the low-T increase of C/T towards C/T for CeCu6
indicates restoration of the FL, i.e. we have pressure-tuned CeCu5.8Au0.2 all the way from
antiferromagnetic order through the quantum critical point to the Fermi liquid. The roughly

x

x
x

x

x

x
x

x

H Tesla1 10

von Lohneysen et al. (1999).



The solution of the dissipative quantum xy model reveals  
a simple and unusual correlation function : Product of a 
function of space and a function of imaginary time.  
Freedom of space and time. Only possible with topological 
excitations.

Quantum-critical thermodynamic and transport 
properties in cuprates and in antiferromagnetic metals 
are very well understood by this solution. 

For the AFM's some questions of crossover to the 
xy model remain. 

Summary:
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Figure 2: The four Possible “classical” domains of the loop ordered state are shown. In the classical ordered phase, one of these
configurations is found in every unit-cell.

higher energy branch of excitations which has not yet
been discovered. A brief report of this work has already
been published20.
The observed broken symmetry is consistent with

spontaneous moments due to a pair of orbital current
loops within each unit-cell preserving overall transla-
tional symmetry. It breaks both time-reversal and inver-
sion symmetry, preserving their product. The “classical”
order parameter21 may be characterized by the anapole
vector22 L

L =

∫

cell
d2r(M(r) × r̂) ≈

∑

µ

Mµ × rµ (1)

where the moment distribution M(r) is formed due to
the currents on the four O-Cu-O triangles per unit-cell
as shown in Fig. (2). This figure also shows the four
possible “classical” domains of the loop current ordered
state. In the classical ground state, ordering occurs in
one of the domains shown.
Quantum-mechanics allows local fluctuations among

the four configurations in Fig (2). This leads, as shown
in this paper to a ground state in which each unit-cell has
a finite admixture of all the four configurations. It also
leads to three branches of collective modes of the order
parameter at finite energies at all momenta q for T < T ∗.
The finite energy follows from the fact that the ground
state has symmetry consistent with that of a generalized
(transverse-field) Ising model. In this paper these modes
will be derived. One can argue that there should be three
because each of the four configurations can make transi-
tions to the other three as pictorially shown in Fig. (3).
This paper is organized as follows: In the next sec-

tion, we introduce the classical AT model for the loop
current order and generalize it to the quantum model in
the SU(4) representation rather than the SU(2)×SU(2)
of the classical AT model. The quantum terms are cho-
sen from considerations of the internal and lattice sym-
metries of the classical model. In the following section,
the ground state of the quantum model is evaluated in
mean-field and the dispersion is calculated using the gen-
eralization of the Holstein-Primakoff transformation. We

Figure 3: The schematic figure shows that there are only 3
collective modes.

compare with the results from experiments. We conclude
by discussing the significance of the experimental discov-
ery of the collective modes and the further possible effects
which arise from the calculations here. In four Appen-
dices, we discuss the necessity for casting the problem in
the SU(4) representation, some technical details, and the
theory for inelastic neutron scattering from the collective
modes.

II. MODEL FOR QUANTUM-STATISTICAL
MECHANICS OF LOOP-CURRENTS

The order parameter L and an effective Hamiltonian
for this collective variable has been derived11,12,23 start-

Translational Symm. Preserved.

Time-reversal, 4-fold rotation
and all except one reflection broken.
(Magneto-electric)

Order parameter:

⌦ ⌘
R
cell

⇣
M(r)⇥ r̂

⌘
.

⌦
1997: Proposed

Four possible orientations of  Ω.



Also, Dichroic ARPES in BISCCO. 
          

Polarized neutron scattering in four families of cuprates 
with the same symmetry discovered.



Tribute to Lev Gor’kov

Interactions which shaped important aspects of my scientific work.

1980’s : Volovik and Gor’kov - Classifications of symmetries 
of superconductors in crystals. 
Buried in the results: Triplet superconductors cannot have line-

nodes of gap for non-zero SO interactions - The anisotropic 

superconductors discovered had to be “D-wave - singlets”.


Discussions on how Fermi-liquid renormalizations in heavy-

fermions are qualitatively different from Fermi-liquid renormalizations

in liquid He-3. z is not an unmentionable!



Tribute to Lev Gor’kov

To what extent do “Methods of QFT …” as in

AGD’s book (1963) help discover physics beyond

quasi-particles and superconductivity in cuprates, 

heavy fermions, Fe-based compounds, etc. ?

Nature of Irreducible vertices and the validity of the

Eliashberg equations.

2000-2016: Cuprate Physics. 

 How anisotropic pseudogap might arise in Q=0 ordered state

but with domains?


 Deciphering effective interactions from experiments when

there are no small parameters so that no calculations are

reliable? Or the physics of Irreducible 
interactions.


