Superinductors and Superinductor - Based Qubits

Michael Gershenson

Department of Physics and Astronomy, Rutgers University

Lev Gor'kov Memorial Conference, June 25,2019

40 years ago:

D.E. Khmelnitskii and L.P. Gor'kov AbrahamsFest @ Rutgers 2007

A.I. Larkin @ Weizmann 1993

L.P. Gor'kov, A.I. Larkin, D.E. Khmelnitskii PARTICLE CONDUCTIVITY IN A TWO-DIMENSIONAL RANDOM POTENTIAL. JETP Letters 30, 228 (1979)

Outline

Fast forward to superconductor-based quantum computing:

- State-of-the-art superconducting qubits
- Superinductors and Superinductor-based qubits

Qubit Performance: Two Main Parameters

the longest time for one

Low error rate:
$$\varepsilon \equiv \frac{t_g}{t_c}$$
 = $\begin{bmatrix} t_g \\ t_c \end{bmatrix}$ = $\begin{bmatrix} t_g \\ t_c \end{bmatrix}$ = t_g and two-qubit gates $t_c = min(T_1, T_{\varphi})$ - the coherence time

Short gate time:
$$t_g$$
 - requires strong non-linearity $t_g > \frac{h}{\delta}$ $\delta \equiv E_{21} - E_{10}$

In superconducting qubits, the non-linearity is provided by Josephson junctions.

Universal Digital QC: "Logical – Physical" Gap

 $E_{01} = E_{01}(E_I, E_C, n_q, \Phi, \dots)$

Noises in Superconducting Qubits

$$\widehat{H} = \frac{E_C}{2} \left(\widehat{n} - n_g \right)^2 - \frac{E_J}{2} \cos \varphi + \frac{E_L}{2} (\phi - 2\pi \Phi_{ext} / \Phi_0)^2$$
$$E_C = \frac{e^2}{2C} \qquad E_J = \left(\frac{\Phi_0}{2\pi}\right)^2 \frac{1}{L_J} \qquad E_L = \left(\frac{\Phi_0}{2\pi}\right)^2 \frac{1}{L}$$

$n_g = n_{g_{stat}} + \delta n_g(t)$	Charge noise	
$\Phi = \Phi_{stat} + \delta \Phi(t)$	Flux noise	High-f noises: relaxation
$E_J = E_{J_{stat}} + \delta E_J(t)$	Crit. current fluctuations	Low-j noises. depnasing

Main source of fluctuations:

two-level systems (TLS) in the qubit environment which remain active even at mK temperatures!

Two Level Systems

TLS Two-Level Fluctuators $E \le k_B T$ (1/f noise, decoherence) **Coherent TLS** $E \gg k_B T$ (resonance coupling to qubits)

Best vs. Typical

Best

For many-qubit circuits, the *smallest T*1 matters!

Typical

P. Klimov et al., PRL 121, 090502 (2018)

Coherence Improvement

$$\Gamma_1^{\lambda} \sim \langle 0 | \hat{\lambda} | 1 \rangle^2 S_{\lambda}(\omega_{01}) \qquad \Gamma_2^{\lambda} \sim \left(\frac{\partial \omega_{01}}{\partial \lambda} \right)^2 S_{\lambda}(0)$$

2

Recipe: (a) reduce noises, (b) increase quantum fluctuations of λ (by reducing E_{λ}),

(c) reduce matrix elements $\langle 0|\hat{\lambda}|1\rangle$.

- Large $E_{\rm J}/E_{\rm C}$:
- sensitivity to the charge noise drops exponentially,
 - the anharmonicity decreases algebraically.

A qubit with **more than one** effective degrees of freedom may offer more robust quantum states.

Theoretical Proposals: Protected "0 - π " Qubit

A. Kitaev et al. **degenerate** logical states with exponentially small overlap

Quantum information is encoded in two near-degenerate logical states.

Suppression of relaxation and dephasing due to exponentially small overlap of logical wave functions and very low flux and charge dispersion.

The fully protected regime exploits a degree of freedom with large quantum fluctuations. This requires an impedance $Z \gg R_Q$.

$$E_L = \left(\frac{\Phi_0}{2\pi}\right)^2 \frac{1}{L} \qquad \frac{E_L}{h} \sim 0.01 GHz \qquad L \sim 10 \mu H \text{ (!)}$$

P. Groszkowski et al., New J. Phys. 20 (2018)

"Heavy" Fluxonium

V. Manucharyan et al.

The effective loss tangent of the inductance must be in the 10^{-8} range in order to reach the coherence times reported in this experiment.

L.B. Nguyen et al., arXiv: 1810.11006 (2018)

Tunable Parity-Protected Qubits

Lev loffe et al.

The goal: to engineer two (almost degenerate) quantum states *indistinguishable* by the environment.

Decay is suppressed exponentially if parity is protected.

Fast tunability (at an expense of T_2 reduction). T_1 is large, which significantly simplifies the problem of error corrections.

$$q = e \qquad V_{\pm} = \frac{1}{2} E_L (\phi - \phi_{ext})^2 \pm E_J \cos\left(\frac{\phi}{2}\right)$$

Fluxon-Parity-Protected Qubits

Implementation of Superinductors

non-dissipative (superconducting) elements with large inductance and small stray capacitance, such that the impedance $Z = \sqrt{L/C} \gg R_Q \equiv \frac{h}{(2e)^2} \approx 6.5 k\Omega$.

Z of conventional "geometric" inductors is limited by the "vacuum" impedance $Z_0 = \sqrt{\mu_0/\varepsilon_0} = 377\Omega \ll R_0$.

Solution: to use the kinetic inductance L_K of superconductors

NbN D. Niepce et al., arXiv: 1802.01723

ultra-narrow wires of disordered superconductors

$$L_K = \frac{1}{W} \cdot \frac{\hbar R_{N\square}}{\pi \,\Delta}$$

 $L_J = \frac{\hbar R_N}{\pi \Lambda}$

Manucharyan et at., Science 326, 113 (2009) Masluk et al., PRL 109, 137002 (2012)

PRL 109,

$$R_{N\square} = 1 \ k\Omega \quad \rightarrow \quad L_{K\square} \sim 1 \ nH$$

Limitations

ultra-narrow wires of disordered superconductors

 $L_K = \frac{1}{W} \cdot \frac{\hbar R_{N\square}}{\pi \,\Delta}$

Upper limit on $R_{N\square}$:

disorder-driven SIT

Josephson arrays with small stray capacitance

$$L_J = \frac{\hbar R_N}{\pi \,\Delta}$$

Upper limit on *R*_{*N*}:

high rate of quantum phase slips $\propto exp\left(-\sqrt{\frac{E_J}{E_C}}\right) \propto exp\left(-\sqrt{\frac{\alpha}{R_N}}\right).$

Upper limit on Z:

stray capacitances

Manucharyan et al., 2018

High - *L_K* **Superinductors**

Granular Al films deposited by magnetron sputtering of pure Al in $Ar + O_2$ atmosphere.

Two main issues:

- losses near SIT

Half- λ microwave resonators

- minimization of stray capacitance

JJ as an indicator of MW currents

Meandered Nanowires

W.-S. Lu et al., to be published

S. de Graaf et al., Phys. Rev. B 99, 205115 (2019)

Meandered nanowires $20 \times 20 \mu m^2$

Device	type	f _r	f_r^{sim}	Z
		GHz	GHz	$k\Omega$
1	junction+ meanders	3.30	3.46	27.5
2	junction+ meanders	3.16	3.78	22.9
3	CPB+ meanders	12.6	13.8	10.1

Total L up to $2\mu H$, good agreement with simulations based on the Mattis-Bardeen theory.

TiN nanowires

 $W = 0.1 \mu m$, $R_{\Box} = 3 \mathrm{k} \Omega$, $L_K \approx 2 \mu H$

 $Z\sim$ 200k Ω (!)

Microresonators fabricated from *AlOx* **films**

Half- λ CPW microresonators ($c^* \sim \frac{c}{100}$, $\frac{\lambda}{2} \approx 200 \ \mu m$ at $f_r = 5 GHz$) with impedance up to 5 $k\Omega$.

The resonator intrinsic losses at T < 0.3K are determined by coupling to the TLS in the environment.

Hole Burning in the TLS Spectrum

AlOx Microresonators: TLS-induced telegraph noise

Telegraph noise in AlOx high-impedance microresonators: the kinetic inductance of sub- μm AlOx nanowires is affected by TLS, and this results in jitter of the resonance frequency.

W. Zhang et al. Phys. Rev. Applied 11, 011003 (2019)

Conclusion: microresonators can be used as a platform for express-analysis of TLS-induced losses and f_r jitter.

Jitter in nanowire resonators made of NbSi.

H. le Sueur et al., arXiv:1810.12801

The TLS-induced local dynamic "gating" may explain poor coherence of the qubits based on coherent phase slips.

InOx, ALD-grown TiN, NbN and TiN.

O. Astafiev *et al., Nature* **484**, 355 (2012) J. Peltonen et al., Phys. Rev. B **88**, 220506(R) (2013)

Some Consequences (cont'd)

No such thing as "quenched" disorder: the local dynamic "gating" might affect the results of the STM experiments with superinductors, especially the 2D superconductors close to the SIT.

B. Sacépé et al., PRL 101, 157006 (2008)

Conclusion

Superinductors enable:

- dominance of the quantum fluctuations of the phase over that of the charge;
- novel platform for the TLS study;
- > novel qubits with improved coherence;
- ultra-small amplifiers and microwave resonators;
- > analog simulators of many-body systems;

and many more.