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Quasi-1D-Systems: Examples

Carbon nanotube “Nanostrip” — constriction
on gated 2D structure

Weak short-range impurities sitting at the surface at
low concentration



Spectrum of clean Quasi-1D-System:

Spectrum consists of a series of 1D subbands
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Parameters

L, - length of the sample, R - transverse size, PF - Fermi
momentum
N ~ prp R - number of available channels
)\ - dimensionless scattering amplitude
N9 - 2D concentration of impurities
[(¢) - mean free path
Lioc ~ Nl(g) - localization length

Conditions

Cleancase |n ~ noR? <« 1

Weak scattering 4| <1

1

P < R < le) < L < Lo
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Magnetic flux
® =7R*H

Flux quantum
o, e

e

What are we going to study?

Ideally clean case:
square root

Van Hove singularities
(when Fermi level
crosses a bottom of
some subband)

Dirty case: only first
harmonic survives

4ol po
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What happens with singularities
in clean (but not 1deal) case?
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Trivial scenario: smoothing of singularity

Aol po

Strictly 1D case, Born approximation

« H. L. Frish, S. P. Lloyd, Phys. Rev., 120, 1179 (1960)
e I.M.Lifshitz, S.A.Gredeskul, and L.A.Pastur,
Introduction to the Theory of Disordered Systems.

Science, Moscow, (1982).
« S. Hugle, R. Egger, Phys. Rev. B 66, 193311 (2002)




Experiment. more complex scenarios

45 - resonance 2

20 4 g= 0.6

B. Babi¢ and C. Schonenberger, Phys. Rev. B 70,
195408 (2004)

Z. Zhang, D. A. Dikin, R. S. Ruo, and V.
Chandrasekhar, Europhys. Letters, 68, 713 (2004)

I'=0.49 meV

80 60 40 20 0 20 40 60 80
AV y(mV)

Phenomenologically these results
were attributed to

(E-Ey,+ql'/2)
(E-E,) +(r/2)

p(E)oc

Fano resonance: single-band scattering at quasidiscrete (attracting) level

We show:

* Multiband structure 1s essential, Non-Born effects are essential;
* Resonance-like behavior possible without quasidiscrete states (e. g., for repulsion)
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Outline

Smearing of Van Hove singularities within Born approximation

Applicability criterion for Born approximation. Requirement
for relatively high impurity concentration: 1. > n. ~ ||

NonBorn effects: strong renormalization of scattering
amplitude for low impurity concentration 72 < T¢

Attracting impurities (A < 0):
Peculiarities of the strip case
Discussion



ldeal system

k? 1
Spectrum: set of ID subbands  |f . — F (m+®/2®,) + —, E, = ——
rk o( / o) m 0T 5 R me 7,
Units of length 277 |7 D
Units of energy E() Emk

E-E =¢ FE,, E=E;,

g, ~N*>1

Density of states

(0)- £ )~ 50 [

Semiclassical density of states =7



Born approximation: Tube

Hamiltonian (point-like impurities) H=Hy,,+V 25 (r-r)

. i , V
Matrix elements: "fk(kznnn’(oi :i) - IR (\I){ k— k' )"l (," —m )()i}

All impurities are equivalent:

Vv kk’mm (¢, z;)|* depends neither on 2;, noon ¢z

*

LA B

IR

Y
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Born approximation: Strip

Hamiltonian (point-like impurities) H=H,+V) &(r-r)
Matrix el ts: (i) 2V ' /
atrix elements: Vit mme (&iy 2i) = 5} exp{i(k — k")z;}

x sin(w(m + 1)&;) sin(w(m’ + 1)&;),

“Strength” of impurities
depends on their position:

o “Typical” impurities: sin*(x(m + 1)&) ~ 1

 Strong impurities: « Weak impurities:

sin(m(m + 1)&) ~ 1 sin’(m(m + 1)&;) =~ 0
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Born approximation
(away from singularity)

Density of states: Vo =7

Scattering rate: 1 — 1 _ 27’(’(

3 [>

)2

Born scattering amplitude A=mV/2<l1

n —

{ ny (27 R)?, for cylinder,
= n <1

9 . .
noD*, for strip,
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Born approximation (near the singularity)

Scattering rates:

]_ —_— ]_ ° 1 _ p— 1
Tube: | —— 7(2) Strip: | 7. = 7.0
( 0(s
1 + m# N
l . 1 n H(f) T0 B o TA/E 74
T(e W\/E Tm(€) 1 4 30 - m =N
\ LT\ E
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Resistivity

Kubo formula (in the Drude approximation):

1
o, =— lr[v G"v G‘]—E 2 V2, (e 1/ =e’Dv,

Diffusion coefﬁ01ent D=vyr/2
“Transport density of states” Standard density of states

@25t ses)  vIe)=Xo(e-5,)

The transport density, in contrast to the standard one, does not have singularities!

v, (£)=2[ = [ ];b[a F-—]ocz e, 0(z,)

So that (Va (£x) “’0)/"0 =1 "'0(303")
P _ Dyv, _ V(g) _l
p, Dv, 2'(8) A Po = e’&,7,
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Smearing of Van Hove singularities:

Born approximation

The perturbation theory holds for |7'(¢)< e

Then, for ¢~ we get the smearing scale ¢,,, from the condition:

1 V(‘r) 1 —~g, D &, =(2m0) 2/3 ~A4/3n2r3’

-ITL‘). o Yo T AINE

Pmax 123,13

P

For & <0 - the standard perturbation theory can be applied for finding

hybridization between the resonant band and nonresonant one:

v(e)= Idg' 0 (g')é'(f; —&'—8s(&")) =~ 0 (8)[1 +

4

—&'

d¢ —27ar2]‘d1,'v( (&' )

~oc 7, (—£) v

sv(&) o Vo(

t

&

)3/2

e

de
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Non-matching asymptotics: indication for
bifurcation point

-

,e>0, e exl

nJ_ Pme

The perturbation theory gives:  [V(£)=V, ~ Vo3 32
[83] ,£<0, &, <|¢| <1
Asymptotics ate >0 and at£ <0 ]

do not match!

A
23 3 P/Po

It hints that there should be a
bifurcation point &,; Near this
point p(¢g) drops dramatically

It could be justified within
SCBA, but we will employ a

more legitimate approach...
&bi | Emin 16

Y&




In the vicinity of singularity density of states is dominated by resonant band
Let us first neglect contributions of all others...
Strictly-1D-systems: exact results
An
= / (s — Iy = —
Average potential <1 Z (r—r )> —
(t) © \ 172 - (1) g8, = (2mr) 2
1 V(F) = e\’ Y I5/7 —
Density of states: Vier(E) = v (bmm) ( =/ € mm) fe T
) 2 0 dx )
Y (q) = 77 9q ( —= exp { —xq — —) }) These results are valid for
' (o4 4
: n > A
. qg>0, ¢>1
Y(g) = < ™V 1 K &)/
lqlexp (=3]q]*%). ¢<0, g >1. V(€)/vo

Multi-impurity scattering
Random potential is effectively gaussian

M

H. L. Frish, S. P. Lloyd,
Phys. Rev., 120, 1179 (1960)




Density of states: from1D to quasi-1D

l/(&:) I/ll()lll( ‘-s( ) + I/l( \( )

. . : ~(t) . .. : t 6y, ~(t
Bifurcation point €1 1s defined by condition Vl(nl(,i)nru( l(“)) ll(.:,_l(f l(:i))'

As a result
E:ZJ'i) ~ - (‘;/8) N ulu)u] ah (1/ “”“)

Hybridization between resonant and nonresonant states gives only a small
correction to the density of states:

32
dv(e) o< —1y n)\Qd | = '/(8 )dg ~ g (51‘“—“)

2

N 3/2
5V(8bi) ~ 1 (m) ~ 1 ln(l/lsmin) <

|5b1|

. : ~1/2
As a result: = ~ 1+ (5 l(:lzn) Y (5/ 5,(:13,1)
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Role of the resonant band

States within the resonant band do not contribute to current
directly!

The resonant band affects the resistivity only through the
density of final states for scattering of current carrying
nonresonant states

Although we are interested in the resistivity of the system,
from the resonant band we need only the density of states. It
simplifies our task greatly.
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Beyond the Born approximation (tube)

Nonlinear amplitude renormalization A — A(\) occurs
already in nonrestricted geometry. Since scattering is isotropic (short-range)
the unitarity theorem reads

mA=—|Al", A=2e ™"

_ The Dyson equation for
scattering operator 7T

V

I'=V+Ve T, = T-=
8o 1—Vg,

Here g0 i1s the topologically nontrivial part of the single-point Green
function. On a cylinder it is a contribution of winding semiclassical
trajectories:

go(e) = ¥ ™G 2mnR) =Y (—em) V2
n#0 m

Ge (7“) - semiclassical Green function in 2D
20



Renormalized scattering amplitude

Scattering amplitude Scattering rate
Al=) _ A 1 2n A | V(S)
1+Ag(z)/ mv, 1‘(8) 7' 1+ Ag(£)/ nv, |

For |e|<«1 A" % A{I—A/n\/E}_' . Thus, non-Born single-impurity effects
are essential if

£ <gy=(An) <1

On the other hand, the single-impurity non-Born effects can be destroyed by
the multi- 1mpur1ty Born scattering, if

)}2/3

EnB < Emin = [()\/71')2(77,/71'

Finally, the criterion for " 'non-Born regime” with strong single-impurity
renormalization reads

n<n, n =i/

[
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Beyond the Born approximation (strip)

 The Green function go(g) = g(€,&;) entering Dyson equation depends on the
position of particular impurity:

9(e,&) = —G(26) + Z {2G6(2n) — G(2n +2§;) — G(2n — "&)}
n=1
N¢&i)

~
~Ny ™

n’(7
\/ —_
« Renormalized scattering amplitude depends on f ; either:
A(n-n] _ A
I 1 -+ .\(](55,)/‘;{—1/()

» The scattering rate involves averaging over f i

o2 AT ()
- /.1 ) I + 2sin"(7N&) =7~
0

~ \’
Inonres ( < )

d§ ry .
|1 4 2Asin®*(7NE) /=

« For |e|] < 1 theaverage scattering is dominated by weak impurities with

sin’ (TNE) ~ /]e| < 1 22



Substitution of renormalized A" (s) =

Resistivity 2(£) in non-born regime:
repulsing 1mpur1tles (4>0)

instead of A gives

1+ \q )/ Ty
for £>0
(7 for cylind
. for cylinder
)(€ :
/(—) ~ ¢ /\_ e <1
P0o e/ ¢ -
——, for strip
L 2\ l R
/
for &£<() Pipo lind
cylinder
[ |¢|, for cylinder ’
/)(f) ‘ . 1/21
—= X eV ' €|l < 1
£0 ok for strip T
\ fV £ A strip
here |6 =¢c/enB \ 1473
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Resistivity p(&)in non-born regime:
attracting impurities (A < 0)

« For £>0 p(¢) does not depend on the sign of 4

« For £<0 thereisapolein Alren) (€) at ‘g:(—l+2i|ﬂ|)€n3

e/, for cylinder

—— R eV , el <1
) for strip A

1P/ po

A-2

The left peak is due to € =€¢/€nB

quasistationary state. In the
case of tube all such states
are 1dentical. In the case of 0.2 111732
strip — different. cylinder

strip

'm




More about quasistationary states

» Positions of the poles in the scattering amplitude

Tube
€qs = (—1 4+ 2i|A])

Strip

€qs(&i) =4 sin"(m\"ﬁ,)(—l + 2i|\)

« Finite width (imaginary part of energy) is due to escape to nonresonant

bands

« Distribution function for binding energies (case of strip):

1

]’(i‘qs)_ __\/|(q |(

* Close to the left maximum (at €45 ~
quasistationary states at strong impurities with  [gin?(r N¢;) ~ 1

)
—4) scattering is dominated by

« Close to zero (at |€| < 1) scattering is dominated by quasistationary

states at weak impurities with

sin®(rN§E) ~

~ /el < 1
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Multi-impurity effects

e Multi-impurity effects are negligible for 7 ( )<
(uB)
(’m

They become essential only at £ <", where

min > can be estimated
from the condition

n 2 n n
1 (o= ) = 2 o
T
(nB) 2
As a result Emin = (1/T)

* The behavior of asymptotics of 7 ! (8 )

7 (e) = 2leln ( + VH( ))

implies the existence of somewhere at € ~ ¢

(nB)

min

* As in the Born case, asymptotics on different sides of singularity do not match:

= n’,&>0,&~ el Again, 1t means that there should be a
| ~Ep {nB) 26

3
n,&



Resistivity mimmimum: self-consistent approach

So far we have studied these effects only within the = Scli-consistent Non-Born
Approximation” (SCNBA). The SCNBA equation for the self-energy () reads

2(g)= ‘A(“") Z(S))IZg(g;:(g))~—‘ c— [1+F\jg_lz(€)]

In the range ¢ < =P the shape of resistivity is A p/pg

~Y_—Inin

like shown in the Figure.
The resistivity minimum

Puia/Po "'(’7/”c)2 KL P cnm

1s reached at

16

E=Eg =—

bifurcation point

| A

(a) Edip Epi
— 8h — /48510 . . o . .
Dashed line — p (8) without multi-impurity effects,
Solid line — SCNBA calculation27



Conclusions

«  High concentration of impurities (73> n.) Born single impurity scattering.
Van Hove singularity structure: “platcau-maximum-plateau”

«  Low concentration of impurities (7 < n,) non-Born effects already in single
impurity scattering.

Attracting impurities: “‘platcav-maximum-minimum-maximum- plateau”
Important role of quasistationary states

Repulsing impurities: “plateau-minimum-maximum-plateau”

*  Deep resistivity minimum near the Van Hove singularity (at € ~ n? ).
Without multi-impurity effects the minimal resistivity wpuld be zero. With
multi-impurity effects the minimal resistivity Pmin < # is nonlinear in 7

* Interesting mesoscopic physics is expected near the minimum.
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