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14 Dirac fermions in superconductors with time reversal symmetry:
class O(T) x R
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Marginal Dirac point

N3 = + 1 − 1 = 0
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electrons in Standard Model

Higgs mechanism CPT violation
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Dirac nodal lines in cuprate superconductors
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Topological quantum phase transition: 
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Symmetry and its breaking are central themes to the
modern understanding of the physical world. In conjunc-
tion with a handful of judiciously chosen experiments and
topological reasoning they have guided us to formulating
fundamental laws in the context of relativistic quantum
field theory as well as the theory of possible states of mat-
ter, their phase transitions and universal behavior. Topo-
logical defects, encompassing monopoles, strings, and do-
main walls in various systems, including fundamental and
synthetic magnetic monopoles, vortices in superconduc-
tors and superfluids, domain walls and skyrmions in mag-
nets and many more, affect the behavior at macroscopic
scales. The range of possible defects is governed by the
broken symmetries and topology of the system. Using nu-
clear magnetic resonance (NMR) techniques we investi-
gate exotic half-quantum vortices (HQVs) – linear topo-
logical defects carrying half quantum of circulation – in
polar-distorted A and polar-distorted B phases of super-
fluid 3He in nanoconfinement. Our results provide exper-
imental evidence that HQVs – previously observed only
in the polar phase – survive the transitions to the super-
fluid phases with polar-distortion. In the polar-distorted
px + ipy superfluid A phase, HQV cores in 2D systems
should harbor isolated Majorana states. Moreover, iso-
lated HQVs are topologically unstable in the fully gapped
B phase but they nevertheless survive as walls bounded
by strings – composite defects hypothesized decades ago
in cosmology. Our experiments establish the superfluid
phases of 3He in nanostructured confinement as a promis-
ing topological media for further investigations on a wide
range of topics ranging from topological quantum com-
puting tocosmology and grand unification scenarios.

Topological defects (TDs) generally form in any symmetry-
breaking phase transitions. The exact nature of the resulting
defects depends on the symmetry-breaking pattern of these
transitions. Our universe – the largest condensed matter sys-
tem known to us – has undergone several symmetry-breaking
phase transitions after the Big Bang. Variety of TDs might
have formed during the early evolution of the Universe when
the Universe underwent symmetry-breaking phase transitions
after the Big Bang. Such phase transitions in the expanding
Universe are nonequilibrium processes and lead to unavoid-
able defect formation via the Kibble-Zurek mechanism.1,2

Experimentally accessible energy scales are currently lim-
ited to times t & 10

�12 s after the Big Bang by the Large
Hadron Collider. From theoretical point of view the physi-
cal understanding may be extended up to the energy scales

of the Grand Unification of the electroweak and strong forces
(t & 10

�36 . . . 10

�32). The total symmetry group describ-
ing the interactions before this epoch is currently unknown,3,4

but yet unobserved cosmic TDs of the phase transitions may
help us to limit the possibilities. A number of cosmic TDs
has been predicted to exist depending on the model of the
Grand Unified Theory (GUT). These are point defects, such
as the t’Hooft-Polyakov magnetic monopole,5,6 linear de-
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FIG. 1. Experimental principles. (a) The 3He sample is confined
within a cylindrical container filled with commercially available
nanomaterial called nafen-90 (where the number refers to its den-
sity in mg/cm3) with uniaxial anisotropy, which consists of parallel
Al2O3 strands with d2 = 8 nm diameter, separated by d1 ⇠ 50 nm
on average. The strands are oriented on average along the axis of ro-
tation, denoted as ẑ. The sample can be rotated with angular veloci-
ties up to 3 rad/s. It is surrounded by rectangular NMR pick-up coils.
The magnetic field transverse to the NMR coils can be oriented at an
arbitrary angle µ with respect to the ẑ axis. (b) The magnetic field,
oriented along the y-direction in this figure, locks the ê2-vector in the
polar-distorted B phase order parameter, Eq. (6). Vectors d̂ and ê1

are free to rotate in the xz-plane by angle ✓. (c) Sketch of the phase
diagram in our sample container in units of Tc of the bulk fluid. The
purple arrows illustrate the thermal cycling used in the measurements
and the purple marker shows a typical measurement point within the
region where either of the polar-distorted A and B phases can exist,
depending on the direction of the temperature sweep. The thermal
cycling is performed at constant 7 bar pressure.
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New topological superfluid engineered by nanostructured confinement.
d D

D ∼ ξ ∼ 50 nm

Aoyama & Ikeda, PRB 73, 060504 (2006)

Aµj = " eiϕ d̂µ m̂j

m̂

px

py
pz

gap

Dirac

node line0

5

10

15

20

25

30

0.5 0.6 0.7 0.8 0.9 1

N
o
rm

a
l

Polar phase

nafen-243

T/Tcb

P
,
b
a
r

nafen

open d, nm D, nm

nafen-90 98% 8 47

nafen-243 94% 9 32

; Dmitriev et al, PRL 115, 165304 (2015)

1µm
px

py

Flat-band fermions

surface

⇕
bulk

When superfluid 3He is confined to anisotropic aerogel (’’nafen’’), a new phases  
stabilize

Dmitriev et al. 2015

�0GAPPED WEYL POINT

ROTA group, AALTO

polar Tc suppression: in secular 
scattering k|| conserved; 
Anderson theorem applies

Fomin 2018

NODE LINE

Aoyama, Ikeda 2006Sauls, Halperin, Parpia



Dirac nodal line generates flat band on the surface

projection of nodal line on the surface determines boundary of 2D flat band
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Flat band - route to room-T superconductivity
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Symmetry and its breaking are central themes to the
modern understanding of the physical world. In conjunc-
tion with a handful of judiciously chosen experiments and
topological reasoning they have guided us to formulating
fundamental laws in the context of relativistic quantum
field theory as well as the theory of possible states of mat-
ter, their phase transitions and universal behavior. Topo-
logical defects, encompassing monopoles, strings, and do-
main walls in various systems, including fundamental and
synthetic magnetic monopoles, vortices in superconduc-
tors and superfluids, domain walls and skyrmions in mag-
nets and many more, affect the behavior at macroscopic
scales. The range of possible defects is governed by the
broken symmetries and topology of the system. Using nu-
clear magnetic resonance (NMR) techniques we investi-
gate exotic half-quantum vortices (HQVs) – linear topo-
logical defects carrying half quantum of circulation – in
polar-distorted A and polar-distorted B phases of super-
fluid 3He in nanoconfinement. Our results provide exper-
imental evidence that HQVs – previously observed only
in the polar phase – survive the transitions to the super-
fluid phases with polar-distortion. In the polar-distorted
px + ipy superfluid A phase, HQV cores in 2D systems
should harbor isolated Majorana states. Moreover, iso-
lated HQVs are topologically unstable in the fully gapped
B phase but they nevertheless survive as walls bounded
by strings – composite defects hypothesized decades ago
in cosmology. Our experiments establish the superfluid
phases of 3He in nanostructured confinement as a promis-
ing topological media for further investigations on a wide
range of topics ranging from topological quantum com-
puting tocosmology and grand unification scenarios.

Topological defects (TDs) generally form in any symmetry-
breaking phase transitions. The exact nature of the resulting
defects depends on the symmetry-breaking pattern of these
transitions. Our universe – the largest condensed matter sys-
tem known to us – has undergone several symmetry-breaking
phase transitions after the Big Bang. Variety of TDs might
have formed during the early evolution of the Universe when
the Universe underwent symmetry-breaking phase transitions
after the Big Bang. Such phase transitions in the expanding
Universe are nonequilibrium processes and lead to unavoid-
able defect formation via the Kibble-Zurek mechanism.1,2

Experimentally accessible energy scales are currently lim-
ited to times t & 10

�12 s after the Big Bang by the Large
Hadron Collider. From theoretical point of view the physi-
cal understanding may be extended up to the energy scales

of the Grand Unification of the electroweak and strong forces
(t & 10

�36 . . . 10

�32). The total symmetry group describ-
ing the interactions before this epoch is currently unknown,3,4

but yet unobserved cosmic TDs of the phase transitions may
help us to limit the possibilities. A number of cosmic TDs
has been predicted to exist depending on the model of the
Grand Unified Theory (GUT). These are point defects, such
as the t’Hooft-Polyakov magnetic monopole,5,6 linear de-

Polar-distorted
A phase

Polar
phase

Normal

P
re

ss
ur

e,
 b

ar

T/Tc

(a)

(c)

d2 d1

Rotation
axis

Magnetic
field

NMR pick-up coils

Polar-
distorted
B phase

PdA phase on cooling,
PdB phase on warming

(b)

FIG. 1. Experimental principles. (a) The 3He sample is confined
within a cylindrical container filled with commercially available
nanomaterial called nafen-90 (where the number refers to its den-
sity in mg/cm3) with uniaxial anisotropy, which consists of parallel
Al2O3 strands with d2 = 8 nm diameter, separated by d1 ⇠ 50 nm
on average. The strands are oriented on average along the axis of ro-
tation, denoted as ẑ. The sample can be rotated with angular veloci-
ties up to 3 rad/s. It is surrounded by rectangular NMR pick-up coils.
The magnetic field transverse to the NMR coils can be oriented at an
arbitrary angle µ with respect to the ẑ axis. (b) The magnetic field,
oriented along the y-direction in this figure, locks the ê2-vector in the
polar-distorted B phase order parameter, Eq. (6). Vectors d̂ and ê1

are free to rotate in the xz-plane by angle ✓. (c) Sketch of the phase
diagram in our sample container in units of Tc of the bulk fluid. The
purple arrows illustrate the thermal cycling used in the measurements
and the purple marker shows a typical measurement point within the
region where either of the polar-distorted A and B phases can exist,
depending on the direction of the temperature sweep. The thermal
cycling is performed at constant 7 bar pressure.
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what happens when det e changes sign and spacetime transforms to anti-spacetime ?
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Kibble-Lazarides-Shafi
walls bounded by strings (1982)

Cosmiclike domain walls
in superfluid 3He-B

Salomaa, GV (1988) 

Mäkinen, Dmitriev, Nissinen, Rysti,
GV, Yudin, Zhang, Eltsov

Half-quantum vortices and walls bounded by strings
in the polar-distorted phasesof topological superfluid 3He

Nat. Comm.  10, 237 (2019)
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horizon at  g00= 0  (or v(rh) = c)

at  r > rh   v(r) > c  type II Weyl point is formed:
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fermionic degrees of freedom
inside black hole horizon
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surface

Fermi
surface

Fermi
surface overtilted Weyl cone

v < c

v < c

v > c

v > c

pr

p⊥

occupied 
levels

Fermi seaE(p)< 0

E(p) < 0

E(p) > 0

E(p) = 0

(Huhtala, GV 2002)

type-II Weyl fermions behind horizon



Weyl cone

horizon
overtilted light cone light cone

overtilted Weyl cone
v < cv > c

v > c

black hole horizon at interface between type-I and type-II Weyl materials

v < c

real space
topological

Lifshits
transition



Hawking radiation as tunneling

(v+c)pr 

(v  –c)pr 

pr

type-1 outside horizon
|v| < c 

type-II inside horizon
|v| > c 

occupied occupied

empty

empty(v+c)pr 

(v – c)pr 

pr

occupied

occupied

empty

tunneling



Pati-Salam Model of particle physics
with 4 generationsto:from: 

Gor’kov equations

Agterberg, Barzykin, Gor’kov
(1999)

CeCo2

(2)(2)

(4
)

(4)

uL

+2/3
dL

–1/3
uR

+2/3
dR

–1/3

uL dL uR dR

dR

sR

bR

yR

dR

sR

bR

yR

dR

sR

bR

yR

eR

μR

τR

λR

cL sL cR sR

tL bL tR bR

xL yL xR yR

 1/3

 1/3

1/3

–1

 –
1

 1
/3

1/
3

1/
3

uL

+2/3
dL

–1/3
uR

+2/3
dR

–1/3

uL

+2/3
dL

–1/3
uR

+2/3
dR

–1/3

νeL

0
eL

–1
νeR

0
eR

–1

16 x 4 = 64  Weyl fermions

8 x 4 = 32  Dirac fermions

3 x 4 x 2 + 8 = 32  Dirac fermions



= 2 components of Majorana fermion

= 4 components of chiral Weyl fermion

= 8 components of Dirac fermion

= 64 components of 16 fermions
            of one generation

= 256 components of fermions
              of 4 generations

N = 5:   8 Weyl nodes
in α−phase of cubic superconductor

(GV & Gor’kov, 1985)

 N = 6:  16 Weyl nodes
in 4D graphene
( Creutz, 2008)

2 rule
N

magic

 N = 8:  64 
Weyl nodes in CeCo2
( Agterberg, Barzykin, Gor’kov 1999)

 N = 1

 N = 2

 N = 3

 N = 6

 N = 8
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