Dirac and Weyl fermions: from Gor'kov equations to Standard Model of particle physics

ââ Aalto University

G. Volovik

Landau Institute

RUSSIAN ACADEMY OF SCIENCES L.D Landau INSTITUTE FOR

THEORETICAL PHYSICS

14 Dirac points

28 Weyl points

48 Weyl points in Standard Model

European Commission Horizon 2020 European Union funding for Research & Innovation

24 Dirac points in Standard Model

European Research Council

Established by the European Commission

Dirac lines, Dirac points & Weyl points in superconductors

Superconducting classes in heavy-fermion systems

G. E. Volovik and L. P. Gor'kov

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences (Submitted 18 October 1984) Zh. Eksp. Teor. Fiz. 88, 1412–1428 (April 1985)

TABLE I. Superconductivity classes for one-dimensional representations of the cubic group.

	Representation	Class	Heat capacity $C_e(T)$		
A_1 A_2	$ \begin{cases} S=0, A_{1g} \\ S=1, A_{1u} \\ S=0, A_{2g} \\ S=1, A_{2u} \end{cases} $	$O \times R$ $O(T) \times R$	$\left egin{array}{c} \exp{(-\Delta/T)} \ \exp{(-\Delta/T)} \ T^2 \ T^3 \end{array} ight $	Dirac lines Dirac points	

TABLE II. Superconductivity classes from two-dimensional representations E of the cubic group.

(η1, η2)	Class	$C_{e}(T)$	Degen- eracy	Magn. properti	es
$(1,0) \begin{cases} S=0, E_g \\ S=1, E_u \end{cases}$ $(1,-1) \begin{cases} S=0, E_g \\ S=1, E_u \end{cases}$	$ \begin{array}{c} O(D_2) \\ D_4^{(1)}(D_2) \times R \end{array} $	T^{3} T^{3} T^{2} T^{3}	2 2 3 3	A A - -	Weyl points Weyl points Dirac lines
(1, 1) $\begin{cases} S=0, E_{g} \\ S=1, E_{u} \end{cases}$	$D_4 \times R$	$\exp(-\Delta/T)$ $\exp(-\Delta/T)$	3 3		Dirac points

a

Right-handed & left-handed Weyl particles

 $p_v(p_z)$ Weyl point: **conical (diabolical)** crossing point in fermionic spectrum in momentum space

 $E^2 = c^2 p^2$

boojums (GV, Mineev 1982)

 $\mathbf{H}(\mathbf{p}) = \mathbf{H}(\mathbf{p})$

Simon 1983, GV 1987

Dirac

monopole

in

momentum

space

8 Weyl fermions in superconductors with broken time reversal symmetry: class O(D₂)

$$N = \frac{e_{\alpha\beta\mu\nu}}{24\pi^2} \operatorname{tr}\left[\int_{\sigma} dS^{\alpha} \ G\partial_{p_{\beta}}G^{-1}G\partial_{p_{\mu}}G^{-1}G\partial_{p_{\nu}}G^{-1}\right]$$

G. E. Volovik and L. P. Gor'kov 1985

14 Dirac fermions in superconductors with time reversal symmetry: class O(T) X R

$$N = \frac{e_{\alpha\beta\mu\nu}}{24\pi^2} \operatorname{tr} \left[\tau_2 \int_{\sigma} dS^{\alpha} \ G\partial_{p_{\beta}} G^{-1} G\partial_{p_{\mu}} G^{-1} G\partial_{p_{\nu}} G^{-1} \right]$$

topological invariant for Dirac points in terms of Gor'kov Green's functions

$$\hat{G}^{-1} = i\omega + \tau_3 \epsilon(\mathbf{p}) + \tau_1 \sigma_i d_i(\mathbf{p}),$$

where the vector gap function is

$$\mathbf{d}(\mathbf{p}) \propto \hat{\mathbf{x}} p_x (p_y^2 - p_z^2) + \hat{\mathbf{y}} p_y (p_z^2 - p_x^2) + \hat{\mathbf{z}} p_z (p_x^2 - p_y^2).$$

14 Dirac fermions split to 28 Weyl fermions when time reversal symmetry is violated

Superconducting classes in heavy-fermion systems

G. E. Volovik and L. P. Gor'kov 1985

Two topological scenaria in Standard Model

massive Dirac electron is formed

Marginal Dirac point splits into two topologically protected Weyl points with $N_3 = +1$ and $N_3 = -1$ splitting of Dirac points to pairs of Weyl points by breaking of time reversal symmetry

Agterberg, Barzykin, Gor'kov (1999)

Dirac lines in cuprates

Superconducting classes in heavy-fermion systems

G. E. Volovik and L. P. Gor'kov

L. D. Landau Institute of Theoretical Physics, USSR Academy of Sciences (Submitted 18 October 1984) Zh. Eksp. Teor. Fiz. 88, 1412–1428 (April 1985)

Representation	Type of basis function	Class	C _e (T)
$A_1 \begin{cases} S=0, A_{1g} \\ S=1, A_{1u} \end{cases}$	Symmetr. Function $a\widetilde{\mathbf{z}}k_z + b(\widetilde{\mathbf{x}}k_x + \widetilde{\mathbf{y}}k_y)$	$D_i \times R$	$\exp\left(-\Delta/T\right)$ $\exp\left(-\Delta/T\right)$
$A_2 \begin{cases} S=0, A_{2g} \\ S=1, A_{2g} \end{cases}$	$k_x k_y (k_x^2 - k_y^2)$ $(\widetilde{\mathbf{x}} k_y + \widetilde{\mathbf{y}} k_x) (k_x^2 - k_y^2)$	$D_{\downarrow}(C_{\downarrow}) \times R$	T ² T ³
$B_{1} \begin{cases} S=0, B_{1g} \\ S=1, B_{1u} \end{cases}$	$ \begin{array}{c} k_x^2 - k_y^2 \\ \widetilde{\mathbf{x}} k_x - \widetilde{\mathbf{y}} k_y \end{array} $	$D_4^{(1)}(D_2) \times R$	$\begin{bmatrix} T^2 & \text{Dirac lines} \\ T^3 \end{bmatrix}$
$B_2 \begin{cases} S=0, B_{2g} \\ S=1, B_{2u} \end{cases}$	$\widetilde{\mathbf{x}}_{k_y}^{k_x k_y} + \widetilde{\mathbf{y}}_{k_x}^{k_y}$	$D_4^{(2)}(D_2) \times \mathbb{R}$	$\left \begin{array}{cc} T^2 & \text{Dirac lines} \\ T^3 \end{array}\right $

TABLE VII. Superconductivity classes from one-dimensional representations of group D_4 .

Dirac nodal lines in *cuprate* superconductors

$$\mathbf{H} = \begin{pmatrix} \frac{p^2}{2m} - \mu & a(p_x^2 - p_y^2) \\ a(p_x^2 - p_y^2) & \mu - \frac{p^2}{2m} \end{pmatrix}$$

$$H(\mathbf{p}) = C(\tau_3 \cos \phi(\mathbf{p}) + \tau_1 \sin \phi(\mathbf{p}))$$

 N_2 -- winding number of $\phi(\mathbf{p})$ around nodal line

Nodal line transforms to Bogoliubov Fermi surface under supercurrent

Topological quantum phase transition: * s+d high-T_c superconductors Pr_{2-x}Ce_xCuO_{4-δ} ???

Sauls, Halperin, Parpia

Superfluid ³He in aerogel confinement

Aoyama, Ikeda 2006 Dmitriev et al. 2015 ROTA group, AALTO

When superfluid ³He is confined to anisotropic aerogel ("nafen"), a new phases stabilize $d \approx 8 \text{ nm}$ $D \approx 50 \text{ nm}$

Dirac nodal line generates flat band on the surface

projection of nodal line on the surface determines boundary of 2D flat band

polar phase of 3He

rhombohedral graphite

Flat band - route to room-T superconductivity

metal with Fermi surface

$$\varepsilon(p) = v_{\rm F} (p - p_{\rm F})$$
$$E^2(p) = \Delta^2 + v_{\rm F}^2 (p - p_{\rm F})^2$$

$$1 = gN(0) \int \frac{d\varepsilon}{E(\varepsilon)} = gN(0) \ln \frac{E_{\rm c}}{\Delta}$$

$$T_c \sim \Delta = E_c \exp\left[-1/gN(0)\right]$$

typical superconductivity: exponentially suppressed transition temperature

flat band superconductiv linear dependence

of T_c on coupling g

Khodel-Shaginyan, JETP Lett. 51, 553 (1990) GV, JETP Lett. 53, 222 (1991) Nozieres, J. Phys. (Fr.) 2, 443 (1992)

> $\varepsilon(p) = 0$ in flat band $E(p) = \Delta$ $\Delta = g \int \frac{d^3 p}{2h^3} = g V_{\text{FB}}$ flat band volume $T_c \sim \Delta = gV_{\rm FB}$

> > $m = 38 \ (\theta = 0.86^{\circ})$

 $||\Delta K||$

Super-Landau superlow: Bogolliubov Fermi surface in Dirac superfluids & superconductors

$$\begin{aligned} \mathbf{v}_{\text{Landau}} &= 0 \\ \mathbf{H} &= \begin{pmatrix} \frac{p^2}{2m} - \mu & cp_z \\ cp_z &- \frac{p^2}{2m} + \mu \end{pmatrix} + \frac{\mathbf{p} \cdot \mathbf{v}_s}{\text{Doppler}} \end{aligned}$$

cuprate superconductors also contain flat edge modes & Bogolliubov Fermi surfaces: **B**^{1/2} density of states (GV 1993) корешок (Gor'kov)

Sauls, Halperin, Parpia

Superfluid ³He in aerogel confinement

Aoyama, Ikeda 2006 Dmitriev et al. 2015 ROTA group, AALTO

When superfluid ³He is confined to anisotropic aerogel ("nafen"), a new phases stabilize $d \approx 8 \text{ nm}$ $D \approx 50 \text{ nm}$

From Weyl to nodal line and anti-Weyl:

from spacetime to antispacetime

antispacetime

polar phase

Alice looking-glass

what is life in antispacetime ?

right Weyl

QED in spacetime and antispacetime

$$L_{\rm em} = \frac{\sqrt{-g}}{24\pi^2} g^{\alpha\beta} g^{\mu\nu} F_{\alpha\mu} F_{\beta\nu} \ln\left(\frac{E_{\rm UV}}{E_{\rm IR}}\right)$$
$$-g = (\det e)^2$$

what happens when **det e** changes sign and **spacetime** transforms to **anti-spacetime** ?

Diakonov 2011

Rovelli 2012

transition to anti-spacetime is non-analytic

spacetime

Nat. Comm. 10, 237 (2019)

save and dangerous transitions to anti-spacetime

save route to anti-spacetime (if Alice & Bob travel together)

Weyl fermions, black hole and Hawking radiation

Weyl fermions in Painleve-Gulstrand spacetime

Weyl fermions in the black hole environment

Painleve-Gulstrand metric

$$ds^2 = g_{\mu\nu}dx^{\mu}dx^{\nu} = -c^2dt^2 + (d\mathbf{r} - \mathbf{v}dt)^2$$

horizon at
$$g_{00} = 0$$
 (or $v(r_h) = c$)
 $\mathbf{v}(\mathbf{r}) = -\hat{\mathbf{r}}c\sqrt{\frac{r_h}{r}}$

at $r > r_h$ v(r) > c type II Weyl point is formed: two Fermi surfaces connected by Weyl point

Weyl fermions in Painleve-Gulstrand spacetime

$$H = \pm c\boldsymbol{\sigma} \cdot \mathbf{p} - p_r v$$

Doppler shift

type-II Weyl fermions behind horizon

black hole horizon at interface between type-I and type-II Weyl materials

Hawking radiation as tunneling

$$T_{\rm H} = \frac{\hbar}{2\pi} \left(\frac{dv}{dr} \right)_{r=r_h}$$

from: Gor'kov equations

to:

Pati-Salam Model of particle physics with 4 generations

Agterberg, Barzykin, Gor'kov (1999)

3 x 4 x 2 + 8 = 32 Dirac fermions

magic
$$2^N$$
 rule

= 4

N = 1

N = 2

$$N = 5: 8 \text{ Weyl nodes}$$

in α -phase of cubic superconductor
(GV & Gor'kov, 1985)
$$= 2 \text{ components of Majorana fermion}$$
$$N = 6: 16 \text{ Weyl nodes}$$

in 4D graphene
(Creutz, 2008)

$$N=3$$
 = 8 components of Dirac fermion

N = 8= 256 components of fermions of 4 generations

Weyl nodes in CeCo₂ (Agterberg, Barzykin, Gor'kov 1999)